
MAR
APR
2024

LLMs, Semantic Kernel, Flowise, C#
co

de
m

ag
.c

om
 -

TH
E

LE
A

D
IN

G
 IN

D
EP

EN
D

EN
T

D
EV

EL
O

PE
R

M
AG

A
ZI

N
E

- U
S

 $
 8

.9
5

 C
an

 $
 1

1.
95

Co
ve

r A
I g

en
er

at
ed

 -
M

ar
ku

s
Eg

ge
r

SubtitleSubtitle Subtitle

Title

melan
Highlight
Exploring AI with Large Language Models

melan
Comment on Text
Understanding High Performance C#

Next-Level Microservices with Aspire

Dive into Distributed Caching Solutions

ARE YOU WONDERING
HOW ARTIFICIAL
INTELLIGENCE CAN
BENEFIT YOU TODAY?©

sh
ut

te
rs

to
ck

EXECUTIVE BRIEFINGS
Are you wondering how AI can help your business? Do you worry about privacy or regulatory issues stopping
you from using AI to its fullest? We have the answers! Our Executive Briefings provide guidance and
concrete advise that help decision makers move forward in this rapidly changing Age of Artificial Intelligence
and Copilots!

We will send an expert to your office to meet with you. You will receive:

1.	 An overview presentation of the current state of Artificial Intelligence.

2.	 How to use AI in your business while ensuring privacy of your and your clients’ information.

3.	� A sample application built on your own HR documents – allowing your employees to query
those documents in English and cutting down the number of questions that you
and your HR group have to answer.

4.	 A roadmap for future use of AI catered to what you do.

AI-SEARCHABLE KNOWLEDGEBASE AND DOCUMENTS
A great first step into the world of Generative Artificial Intelligence, Large Language Models (LLMs),
and GPT is to create an AI that provides your staff or clients access to your institutional knowledge,
documentation, and data through an AI-searchable knowledgebase. We can help you implement a first
system in a matter of days in a fashion that is secure and individualized to each user. Your data remains
yours! Answers provided by the AI are grounded in your own information and is thus correct and applicable.

COPILOTS FOR YOUR OWN APPS
Applications without Copilots are now legacy!

But fear not! We can help you build Copilot features into your applications in a secure and integrated
fashion.

CONTACT US TODAY FOR A FREE CONSULTATION AND DETAILS ABOUT OUR SERVICES.

codemag.com/ai-services
832-717-4445 ext. 9 • info@codemag.com

4 codemag.com

TABLE OF CONTENTS

4 Table of Contents

US subscriptions are US $29.99 for one year. Subscriptions outside the US pay
$50.99 USD. Payments should be made in US dollars drawn on a US bank. American
Express, MasterCard, Visa, and Discover credit cards are accepted. Back issues are
available. For subscription information, send e-mail to subscriptions@codemag.com
or contact Customer Service at 832-717-4445 ext. 9.

Subscribe online at www.codemag.com

CODE Component Developer Magazine (ISSN # 1547-5166) is published bimonthly
by EPS Software Corporation, 6605 Cypresswood Drive, Suite 425, Spring, TX
77379 U.S.A. POSTMASTER: Send address changes to CODE Component Developer
Magazine, 6605 Cypresswood Drive, Suite 425, Spring, TX 77379 U.S.A.

Features
8 	 �CODE: 25 Years Ago

CODE Magazine has been documenting our industry’s creativity
for a quarter of a century. Markus takes a trip down memory lane
to show us how far we’ve come.
Markus Egger

14 	 �Passkey Authentication
We’re all looking forward to the day when passwords are no longer
necessary. Sahil takes a look at how to get your applications ready.
Sahil Malik

22 	 �You’re Missing Out on
Open-Source LLMs!
Philipp examines Large Language Models and Chat-GPT,
and how to get them to do what YOU want.
Philipp Bauer

30 	 �Prototyping LangChain
Applications Visually Using Flowise
The LangChain framework can help you query large amounts of data,
and Wei-Meng shows you how to use Flowise to do it, even if you’re
not writing code.
Wei-Meng Lee

46 	 �Semantic Kernel 101: Part 2
Microsoft Semantic Kernel is an open-source AI framework.
It’s very new, and Mike explores the code that helps you use
this powerful new tool.
Mike Yeager

52 	 �Aspirational .NET:
What Is .NET Aspire?
Shawn takes the misery out of coordinating microservices
and distributed applications with Aspire, a cool new tool from
the ASP.NET team at Microsoft.
Shawn Wildermuth

58 	 �Distributed Caching:
Enhancing Scalability and
Performance in ASP.NET 8 Core
Joydip covers the pros and cons of distributed caching and
teaches you how to implement it in ASP.NET Core.
Joydip Kanjilal

71 	 �C# for High-Performance Systems
It turns out that you can write high-performance code in C# that
matches or exceeds the performance of native code. Oren shows you
how to retain all the advantages of C# while you’re at it.
Oren Eini

Departments
6 	 Editorial

21 	 �Advertisers Index

73 	 Code Compilers

melan
Comment on Text
Change "with" to "using"

5Title articlecodemag.com

LEAD Tools

6 codemag.com

Jamulus lets you play, rehearse, or jam with
your friends, your band, or anyone you find
online. Play together remotely in time with
high quality, low-latency sound on a normal
broadband connection.

The key phrase in this statement is low-latency.
The folks who created Jamulus created a solu-
tion that enabled remote collaborations that
was as close to an in-person experience as pos-
sible. This group of intrepid musicians found a
tool that helped them to move forward. They
soon adapted their process to Jamulus’s rather
rigid requirements with great and satisfying
success.

The musicians weren’t the only folks that
adapted their processes. My wife and I are cur-
rently binge-watching a show on Netflix called
The Blacklist. The episode last night completely
blew my mind. It was the season finale of sea-
son 7. This episode was in the process of being
filmed during the worst part of the COVID crisis
when everything was being shut down. The epi-
sode began with a prologue of clips from the
cast and crew where they mentioned that they
were halfway done shooting the episode when
they were forced to shut down.

But they didn’t shut down. They retreated tem-
porarily and came up with a solution. The parts
of the film that weren’t shot live-action were
animated. It was a bit odd, but it worked! As a
film geek, it was an additional treat for me to
see how a show is shot out of continuity using a
real-world example. Changing how they worked
allowed these collaborators to accomplish what
they probably thought was an impossible task.
As Gunny Seargent Thomas Highway would say:
They overcame, they adapted.

This is what we do as human beings. We over-
come obstacles. We adapt and we move for-
ward. How have you adapted?

Editorial

Are You Ready to Pivot?
As they like to say, a picture is worth a thousand words and the picture you see below (Figure 1) is
proof positive. This editorial you’re reading is a direct result of the ideas I “chicken-scratched” on a stack
of post-it notes. This set of notes came from a conversation Melanie Spiller and I were having about
collaboration, in particular the concept of remote collaboration. We discussed at length how our work,
and how we perform it, was greatly transformed during the COVID crisis. COVID affected every one of
us in profound ways and we were forced to create new ways of working together, albeit remotely. We
had to change how we collaborated.

EDITORIAL

6

A lot of the conversations I have with Mela-
nie about creativity and collaboration center
around many non-tech fields. Every creative
endeavor shares some a common DNA and by
examining other fields not related to your own,
you might find newer ways of thinking. At a
minimum, you’ll likely learn something you
don’t know. That’s a win/win, right?

Well, this particular conversation was focused
on one creative field: music. We talked about
how COVID changed the way musicians were
forced to change their collaborative process
during the pandemic.

Before COVID, I was taking guitar lessons. My
teacher came to my house twice a month for
an in-person session where he taught me the
foundations of guitar playing, including scales,
chords, and, what was probably the most dif-
ficult aspect for me, timing. Scales and chords
were probably the easiest part. With practice, I
got better and better as our lessons progressed.
It was that cursed timing that caused me the
most agita. The metronome was not my friend
and, to be honest, I never really got the hang
of it. Over and over, he beat it into me that if I
ever wanted to play with other folks, I needed
to get timing down. It was this timing thing
that was part of my discussion with Melanie.

Along with being a darn fine editor, Melanie is an
accomplished musician and she collaborates with
numerous musicians in many different organiza-
tions. In normal times, these collaborations take
place in person. Rehearsals, practice, organiza-
tion—all done in person. COVID changed all of
that. It didn’t take too long for these musicians to
realize that creating the fidelity of in-person mu-
sicianship was difficult to pull off remotely and,
in the beginning, impossible. The reason? Timing.
Melanie and her collaborators soon discovered the
bane of remote collaborations using ordinary tools
such as Zoom: lag. Technology people are inti-
mately familiar with the concept of lag and there
are a bunch of different terms used to describe
lag, such as response times, ping times, TTL, etc.
We strive to lower lag to make our work perform
better or to at least to have the appearance of
better performance. Progress bars anyone?

Melanie and her musician friends couldn’t paper
over these lag issues. It would be difficult to
create great performances, let alone satisfying
and productive rehearsals, if they couldn’t con-
trol the issue of lag. So they searched for a
solution to controlling or eliminating lag. This
is where they found a product called Jamulus.

The Jamulus website describes their product as
follows:

� Rod Paddock
�

Figure 1: The origin of the species

7codemag.com

The Boring Database

“After years of fixing mistakes that others did in SQL, developing a

world-renown application to find common ones, I realized that the

problem is not with people, but with technology.

That day I started RavenDB.”

Oren Eini
CEO & Founder

Predictable

All-in-One

Effortless

// Search

from Employees

where search(Notes, 'University')

// Filter & Spatial

from Restaurants

where Type = 'Coffee Shop' and spatial.within(

 spatial.point(Address.Location.Latitude,

 Address.Location.Longitude),

 spatial.circle(20, 47.623473, -122.3060097)

)

// Plot

from Employees

select timeseries(

 from HeartRates between '2020-01-01' and '2020-12-31'

)

// Aggregate

from Orders

group by ShipTo.City

select ShipTo.City as ShipToCity, sum(Lines[].Quantity) as TotalQuantity

87 BPM

Time Series

... and More

Cafe near me

Spatial

Innovati

Full-Text Search

Distributed Counters

Three Ways to Experience RavenDB

ravendb.net/try

codemag.com8 CODE: 25 Years Ago

ONLINE QUICK ID 2403021

CODE: 25 Years Ago
As we continue our celebration of “30 years of CODE Group,” we travel forward five years from last issue’s installment of “the
Antique CODE Show” and look at our industry, and the world in general, 25 years ago (or so). The late 90s were an interesting
time for our industry. Compared to five years earlier, the internet had rapidly become mainstream. Although hardly anyone

outside the software industry had heard of it in 1993,
hardly anyone had not heard of it by 1998.

Netscape was the dominant player in the browser market,
one of the hottest areas of software development, back
then. So much so, that this is generally thought of as the
era of “the great browser wars,” with Microsoft pushing
into the market with Internet Explorer and going as far
as—gasp—bundling the browser directly with the operat-
ing system. Although it’s unthinkable today that any PC
or device wouldn’t support direct internet access, back
then, this was enough to cause 20 U.S. states to file
antitrust charges against Microsoft. The aim was to “de-
termine whether the company’s bundling of the browser
with the OS constituted an unfair monopolistic practice.”
Although it was initially ruled in 2000 that Microsoft had
violated antitrust laws and the company was ordered to
be split into two entities, that ruling was later overturned
on appeal, and Microsoft was allowed to continue operat-
ing as a single entity (although under some limitations
that affected the organization for a long time to come).

But it wasn’t all about Netscape and Microsoft. The mu-
sic industry was turned upside down due to the emer-
gence of Napster, a peer-to-peer music sharing system
that unraveled the business model of the entire industry.
At the height of its popularity, Napster had 80 million
registered users who happily shared music for free (and
arguably illegally) with their peers, until the service was
shut down in 2001. At the time, artists that topped the
charts included names like Britney Spears, the Backstreet
Boys, and Eminem. It’s hard to say which songs were the
most shared, but Madonna and Elton John songs were up
there, and the artists were also among the more outspo-
ken against the practice of peer-to-peer sharing for free.
Eventually, the Metallica vs. Napster lawsuit was the start
of the end for the service.

The late 90s were also a great time for moviegoers (which
included me back then). Films such as “Titanic” (1997),
“Saving Private Ryan” (1998), and “The Matrix” (1999)
were among the most popular. It’s hard to believe that
it‘s been a quarter century since their release. Among the
most important software companies that got established
in the late 90s was Google (September of 1998). Although
it’s hard to believe that James Cameron finished “Titanic”
more than 25 years ago, it’s even harder to believe that
Google is younger than this movie, as it’s difficult today
to imagine a world without Google.

Politically speaking, times were a bit simpler, as our main
concern was Bill Clinton’s love for cigars and interns. In-
ternationally, nuclear tests by Pakistan and India were
the hot topic. The Good Friday Agreement in April of 1998
brought an end to the violence in Northern Ireland. In
science and medicine, we hadn’t yet completely decoded
human DNA, but on the upside, Viagra was approved by

the FDA in March of 1998. If you’re a reader who was al-
ready in the industry back in 1998, this development may
have more significance for you today than you imagined
back then.

This was also the heyday of the dotcom bubble. The in-
ternet had grown rapidly, and everyone wanted to invest
in the wildest ideas. Venture capital investment went
through the roof and so did IPOs. Very few had solid ideas
of how any of this was going to make any money, but
“the new economy” didn’t bother much with such detail.
Who cares, when you can party like it’s 1999? The NAS-
DAQ stock exchange grew five-fold in those years, until it
all blew up and it plunged from a peak of $5,048.62 on
March 10, 2000, down to $1,139.90 on October 4, 2002
(which takes us almost into the timeframe of the next
article). Among the biggest and most visible losers of
the dotcom era are Pets.com, Boo.com, Kozmo.com, and
eToys. However, there weren’t only losers. Amazon.com,
eBay, Google, and several others, are not just still around
but have grown into some of the largest and most influ-
ential companies on the planet. I guess our ideas weren’t
all crazy in those days after all.

Absent from the list of influential companies in the late
90s is Apple. Teetering on the brink of bankruptcy, Steve
Jobs had just returned to Apple in 1997. Even Microsoft
invested $150 million into Apple in August of 1997,
which, in hindsight, was probably not insignificant as a
factor in the survival of the company, as it helped stabi-
lize the finances of the company and allowed it to subse-
quently go on to develop new products such as the iMac
and the iPod. But that was all still in the future and Apple
clearly wasn’t very cool in 1998, except for some niche
markets, such as desktop publishing. (When we released
the first issues of this magazine, it was all done on Macs).

Talking about CODE: As far as CODE Group goes, we were
around as a small but growing consulting and training or-
ganization. Our headquarters had already moved to Hous-
ton, Texas. We did a lot of consulting and training and
were very active in Windows and internet-based develop-
ment and had started architecting systems that weren’t
just object-oriented, but we were starting to think about
component-based multi-tiered systems, rather than just
“network enabled” software. This was a big deal at a time,
and ultimately lead to the “CODE” brand, which originally
stood for COmponent DEveloper. CODE Magazine hadn’t
published its first issue yet (because the overall CODE
Group organization goes back further than the magazine),
but this is when we first had the idea of publishing a
developer magazine that didn’t just focus on a single
programming language (such as Visual Basic Programmer’s
Journal, FoxPro Advisor, or C/C++ User’s Journal) but cov-
ered software development at a larger, more technology-
oriented level. The idea was laughed at by many at the
time, but has served us very well ever since.

Markus Egger
megger@codemag.com

Markus, the dynamic
founder of CODE Group and
CODE Magazine’s publisher,
is a celebrated Microsoft
RD (Regional Director) and
multi-award-winning MVP
(Most Valuable Profession-
al). A prolific coder, he’s
influenced and advised top
Fortune 500 companies
and has been a Microsoft
contractor, including on
the Visual Studio team.
Globally recognized as
a speaker and author,
Markus’s expertise spans
Artificial Intelligence (AI),
.NET, client-side web, and
cloud development, focus-
ing on user interfaces,
productivity, and maintain-
able systems. Away from
work, he’s an enthusiastic
windsurfer, scuba diver,
ice hockey player, golfer,
and globetrotter, who
loves gaming on PC or
Xbox during rainy days.

codemag.com 9

great step toward simplifying the world of peripherals.
All of a sudden, it became a lot easier to use printers,
scanners, and cameras. Windows 98 had also improved
support for devices such as sound cards, video cards (we
didn’t call them GPUs back then), and modems (yes,
we were still dialing up to the internet and paying hor-
rendous phone bills). Windows 98 was also much faster
than Windows 95, with improved memory management
and disk caching. The GUI (graphical user interface) of
Windows 98 was similar to that first released in Windows
95 (Figure 1). That means a lot of “battleship gray” ap-
plications, as well as a Start Menu that wasn’t searchable.
All in all, Windows 98 was a great choice as an operating
system for a user’s PC.

As far as hardware is concerned, users hardly ever had PCs
with more than 32MB of RAM, sporting an Intel Pentium
processor (Figure 2). Spinning hard disks with 4GB of
storage was the norm. If you were modern, your software
was installed from a CD-ROM drive. The speed of that drive
mattered, and if you wanted to be among the cool kids,
you needed a drive that was “24x or faster.” You probably
also looked at an SVGA CRT monitor back then. That’s right

The Technology Landscape
Windows 98 was the operating system many of us used
at the time. It tends to be a somewhat less prominent
release of Windows, between the major milestones that
were Windows 95 earlier, and the subsequent and excel-
lent Windows XP. However, Windows 98 was a very solid
version of Windows that improved on Windows 95 in a
variety of ways. Internet Explorer 4.0 shipped out of the
box and was a very solid browser that supported (and
pushed forward) the latest version of HTML. It’s easy to
forget that Microsoft was instrumental in making brows-
ers and HTML more of a real development environment,
supporting JavaScript, VB Script, and a DOM (Document
Object Model), which allowed programmers to interact
with elements on the page in ways that were previously
unthinkable for what used to be a simple document and
text display mechanism with hyperlinks. In 1998, if you
wanted to look at a modern website, Internet Explorer
was a good choice indeed, as Netscape had an increas-
ingly hard time keeping up with Microsoft.

The other parts of the operating system were impressive
too. USB was supported for the first time, which was a

9CODE: 25 Years Ago

Figure 1: The Windows 98 Desktop with File Manager

codemag.com

for a while, it wasn’t until the late 90s that I started
experimenting with using a laptop as my main workhorse
machine. I still switched back and forth between that
approach and more conventional desktop setups (espe-
cially for gaming) but having laptop computers with de-
cent horsepower and reasonably good color displays just
hadn’t been a thing much earlier.

Speaking of gaming: Looking at popular titles, this was
when we started recognizing key players and brands that
still have significance today. Valve released Half-Life
(later, Half-Life 2 was the start of Valve’s now dominant
Steam gaming marketplace) in 1998. StarCraft eventually
sparked competitive gaming and eSports. Unreal by Epic
Games was where the Unreal Engine originally came from.
Ensemble Studios (basically Microsoft) released Age of Em-
pires, and Bioware gave us the first Baldur’s Gate game
(Figure 3). This might confuse you because 2023’s game
of the year is also Baldur’s Gate, but that’s the successor
to the classic game. Both are highly recommended to any
avid PC gamer.

10 CODE: 25 Years Ago

Figure 2: A typical setup of a PC running Windows 98, sporting both a 3 ½-inch floppy
drive and a CD drive

kids: We were looking at 800x600 pixels of resolution back
then, and we loved it! Now get off my lawn!

But Windows 98 wasn’t the only Microsoft operating sys-
tem that was popular in the late 90s. Microsoft also
continued to develop Windows NT as the operating sys-
tem of choice for enterprise servers. NT4 was released
in 1996 and would be heavily in use for a long time to
come. It was built on NT 3.5 and NT 3.51, which had in-
troduced the 32-bit kernel and a new file system (NTFS),
and Active Directory. It’s a great operating system, and
we still use the successors of much of that technology
in modern versions of Windows today. Many developers
even opted to use NT4 as the operating system of choice
for their development machines back then. It was a bit
clunkier for end-users than Windows 98, but it also had
a very solid core. For technical people, it wasn’t a bad
trade-off at all.

This was also when laptop computers became far more
popular and mainstream. Although they’d been around

codemag.com

If you were truly daring, you even dabbled in XML, which
was a newfangled standard based on angle-brackets that
kinda looked like the then-still-new HTML, but it had more
structure. To what end, many people wondered? There was
much speculation about web browsers being able to make
more sense of XML than HTML, but many doubted its po-
tential. I remember sitting in a keynote at a sizable com-
puter conference in the Netherlands, where the presenter

But PC gaming wasn’t all there was. Sony had already
released their PlayStation brand a few years earlier, and
Microsoft was hard at work on the first Xbox, which was to
become a competitor to PlayStation 2 as well as Ninten-
do’s GameCube, which itself was a successor to Nintendo’s
successful Nintendo 64 (Figure 4). Games like Mario Kart
were all the rage on that platform but would ultimately
be surpassed by the amazing next-generation experiences
provided by the Xbox and the PS2. But that was still in
the future.

Software Development
The world of software development in the late 90s was
both in flux and also relatively calm, in hindsight. It
didn’t seem like it at the time, because we had to come to
grips with the realities of the internet and many software
developers were still wondering whether this graphical
user interface experience was actually good for business
applications and many DOS die-hards were still holding
on by the skin of their teeth. But the debate had pretty
much been settled for most of us then: Windows desktop
apps were what serious developers were building, and you
just couldn’t ignore the internet either. We were develop-
ing what seemed to be relatively sophisticated interactive
web pages at the time through the use of ISAPI web-
server extensions. Just imagine the power: Rather than
writing static files with a .html extension, the user could
hit a URL and a piece of code could respond, figure out
what the user wanted, and send back a string of HTML
that was generated on the fly! It seemed as though we’d
touched the future (and so we had!).

1111CODE: 25 Years Ago

Figure 3: The isometric (and very low-res and fuzzy) goodness that is Baldur’s Gate 1 in 1998.

Figure 4: The Nintendo 64 was one hot gaming device in the mid-to-late 90s!

codemag.com

many second-tier languages that achieved a wide degree
of popularity, such as Visual FoxPro, Delphi, Pearl, and
Python. Some of these rose from there, while others were
either at end-of-life or lost significance. A good example
of the latter is Visual Basic, which had its heyday in the
world of Windows desktop application development. It’s
clear that its approach to software development has been
among the most impactful contributions in business ap-
plication development, period. It still continued to do so
for several decades and into the world of .NET, even when
C# took the crown of being the most popular language in
the Microsoft .NET ecosystem.

C# itself was born as a brainchild of Anders Hejlsberg in
the late 90s (and publicly announced in the summer of
2000). Anders is considered the father of many program-
ming languages and has clearly had a dramatic impact
on programming languages in general. He’s the original
author of Turbo Pascal and the Chief Architect of Delphi.
Once he joined Microsoft as a Technical Fellow, he created
C# (originally codenamed Cool) in an effort to fix some
of the shortcomings of Java. He also later created the
popular TypeScript language to fix the shortcomings of
JavaScript. On a more personal note, Anders is also one
of the most impressive yet nicest people I ever had the
pleasure of working with (full disclosure: I worked for the
Microsoft Visual Studio team as a contractor in the late
90s, but my personal involvement with C# was not huge).

Although Microsoft had been very strong in Windows de-
velopment tools, with the main workhorses being Visual
Basic, Visual C++, and Visual FoxPro, Microsoft had also
originally missed the boat on the internet wave, think-
ing its own competing Microsoft Network (MSN) had a
real chance of competing with the internet (and also
CompuServe) as a walled garden within the Windows eco-
system. You can be forgiven for not remembering MSN

questioned the point of XML and predicted it would go
nowhere. He also predicted many other things, such as the
demise of Microsoft. He questioned the concept of “visual”
development (as in Visual Basic or Visual C++). Literally
none of his predictions came true. I forgot the name of the
presenter, but I often wondered what became of him.

The most popular programming languages of the late
90s were Visual Basic, C++, and Java. There were also

Figure 6: The Microsoft Visual InterDev CD sleeve

Figure 5: The login screen to Microsoft’s ill-fated competitor to the entire internet was called
“The Microsoft Network.” The name survives as MSN, which is now one of many web sites.

12 CODE: 25 Years Ago

codemag.com

as a separate technology. The technology is, in fact, so
obscure, that I had a hard time finding any screen shots,
and I had to settle for the login screen (Figure 5). In
an attempt to catch up, Microsoft released Active Server
Pages (ASP) as a technology, and Visual InterDev as a
development environment for it. It was a first attempt to
create an IDE for web development inspired by the ideas
established by Visual Basic. The IDE was also shared with
Visual J++, which was Microsoft’s version of a Java devel-
opment environment.

Although neither Visual InterDev nor Visual J++ were
around long (and the logo was one of the better parts
of the whole Visual InterDev suite, as seen in Figure
6), these two products still laid the foundation for what
would ultimately become one of the most successful soft-
ware development IDEs and environments ever: Visual
Studio for Windows. Visual Studio was the first IDE that
was language- and technology-agnostic and allowed de-
velopers to stay in the same IDE, regardless of whether
they wanted to develop in Visual Basic, C++, C#, or quite
a few other languages, and regardless of whether they
were building for Windows, the Web, or many other plat-
forms of the future. However, as we’re looking 25 years
back to the late 90s, none of this had happened yet,
and Visual InterDev and the first version of Active Server
Pages is all we got. I don’t miss those days.

That sums up where we were 25 years ago from a software
developer’s point-of-view. We were on the cusp of a lot of
changes, but we hardly realized it back then. Neverthe-
less, a lot of the things we will look at in the next article,
when we look back 20 years, was the inescapable future
based on what was built in the late 90s. And let’s not
forget that the late 90s is also the birth of Clippy, the not
so beloved grandfather of the popular ChatGPT.

� Markus Egger
�

SPONSORED SIDEBAR

CODE Is Hiring!

CODE Staffing is accepting
resumes for various
open positions ranging
from junior to senior
roles. We have multiple
openings and will consider
candidates who seek
full-time employment or
contracting opportunities.
For more information, visit
www.codestaffing.com.

1313CODE: 25 Years Ago

14 codemag.comPasskey Authentication

ONLINE QUICK ID 2403031

Passkey Authentication
In a previous article in CODE Magazine, https://www.codemag.com/Article/2209021/FIDO2-and-WebAuthn, I talked about
FIDO2 and WebAuthn. Look, passwords suck, but finally, as an industry, we’re getting behind getting rid of them for real. The
FIDO2 standard bakes in enough capabilities to completely eliminate passwords, and passkeys offer the convenience to be a

great password replacement. Yes, password stealing is
going to be history and along with it, things such as
phishing. This safety will gradually be so completely built
across the internet that our grandmothers will feel com-
fortable using it. Of course, security is a game of cat and
mouse. The threats will just move elsewhere, like hacking
into back-end systems, social engineering, etc.

That is not what this article is about. This article is about
implementing passkey authentication in your web appli-
cations. I ended the previous article by showing how to
use hardware-based FIDO2 keys, such as YubiKeys to au-
thenticate with Microsoft Entra ID (formerly Azure AD).
Although that’s a perfectly capable option, what if you’re
not using Entra ID? Or what if you truly wish to under-
stand what’s going on behind the scenes?

In this article, I’m going to build an end-to-end applica-
tion that shows how to implement FIDO2 authentication
both on the client side and server side. I’ll use that as an
excuse to explain the various details in the spec, and I’ll
use it to demonstrate passkeys.

Assumptions
The FIDO2 standard is quite flexible. It considers various
nuances, such as the quality of keys you wish to control,
how many credentials a user can create for a certain URL,
what kinds of passkeys are supported, etc. Although I
won’t have the opportunity to demonstrate every single
possibility in this article, for brevity and the sake of hav-
ing a complete application working by the end of this
article, let’s start with some assumptions.

This article is going to show demo code. This code is not
intended for production use. There are security shortcuts
in the code I'm about to demonstrate.

Although the FIDO2 standard allows a user to create mul-
tiple credentials for the same website, I'm going to re-
strict my application to using a single credential for the
given website. I’ll talk through what multiple credentials
means for a user and the facilities WebAuthn allows that
help a user pick a certain credential or allows your appli-
cation to specify which explicit credential is acceptable
for a given purpose.

FIDO2 allows you to create credentials for a given URL
as long as your website runs on HTTPS. For development
purposes, you can also use localhost without HTTPS, and
that's what I'll be using.

To keep things simple, I'm going to use session state as
my database. Again, this is a huge shortcut I'm taking,
and this is, by no means, a production-ready application.
In reality, you’d use a persistent storage, such as a da-
tabase, to maintain user registration and log-in informa-

tion. However, I've taken the shortcut for two reasons.
The first reason is brevity of code. The second reason
is that anytime I start debugging, my application resets
back to zero. This reset means that between runs of the
application, I must delete the passkey that the user regis-
tered. This is an okay workaround for demo code. Also, the
hard-coded user I’ll be using is “sahil@localhost.com”.

Although the FIDO2 protocol and the WebAuthn standard
are not language specific, the browser code must be writ-
ten in JavaScript. The server code can be implemented
in any language you wish. There are libraries for various
languages that you can use. For my purposes, I'll be us-
ing NodeJS.

I won’t be focusing on NodeJS basics here.

With these assumptions, let's get started.

Project Set Up
The basic project structure I’m using can be seen in Fig-
ure 1.

This looks like a simple NodeJS project. This application
is built using express and takes a dependency on the fol-
lowing npm packages.

The project uses dotenv to hold environment variables
equivalent in the .env file. Dotenv and .env files are a
great way of managing configurable inputs to your pro-
gram. The thought is that you can specify values as a .env
file in your local dev environment. When the .env file is
missing, it can pick those same values from an environ-
ment variable. This is incredibly useful when you package
your application and ship it as, say, a Docker container.
Typically, you’d create a .env as a sample, check it in,
then add it to .gitignore and allow developers to add sen-
sitive information. Or you can create a .env.example in
the root of your project. This is a great way to reduce the
impedance mismatch between production and dev.

I’m also taking a dependency on express and express-
session. These are express-related packages that allow me
to create a basic website that supports a simple UI, and
some back-end code that supports an API. Also, it allows
me to support sessions.

Finally, I’m taking a dependency on “fido2-lib” npm pack-
age. Although I could write the FIDO2 code myself, I re-
ally don’t wish to reinvent the wheel and spend my week-
end implementing the well-documented 19-step valida-
tion logic when someone else has already done it and it’s
been peer reviewed and well tested.

The “dependencies” section of my package.json looks like
this:

Sahil Malik
www.winsmarts.com
@sahilmalik

Sahil Malik is a Microsoft
MVP, INETA speaker,
a .NET author, consultant,
and trainer.

Sahil loves interacting
with fellow geeks in real
time. His talks and train-
ings are full of humor and
practical nuggets.

His areas of expertise are
cross-platform Mobile app
development, Microsoft
anything, and security
and identity.

15codemag.com Passkey Authentication

"dependencies": {
 "dotenv": "^16.3.1",
 "express": "^4.18.2",
 "express-session": "^1.17.3",
 "fido2-lib": "^3.4.3"
},

The rest of my package.json is pretty plain vanilla.

In the rest of my project, the .env file holds my environ-
ment variables, which can be seen here:

RPDisplayName = "localhost"
RPID = "localhost"
RPOrigin = "http://localhost"
RPPort = "80"

These are all values I need either for the FIDO2 standard
or to run my site. For the port I wish to run on, it would
be nice if this were configurable. Once referenced in my
.env, I can use these values:

const env = dotenv.config().parsed;
console.log(env.RPID);

The rest of my code consists of some server-side and some
client-side code. The server-side code is responsible for
serving the client-side code as a simple website and ex-
posing certain APIs that are required for the FIDO2 regis-
tration and authentication to succeed.

The client-side code presents a very simple user interface
where I show the user a text box prompting the user to
enter their username, and click the register or login but-
ton as needed. Additionally, for debug purposes, I can
show the user a status message showing the output of
their most recent action. The user interface in action can
be seen in Figure 2. I hope you’re impressed by my design
skills.

The server-side code also exposes four POST methods: be-
ginRegistration, endRegistration, beginLogin, and end-
Login. I’ll explain each of these in depth shortly. They’re
implemented in the /libs/authn.js file. A partial snippet
of setting up one of these routes can be seen below.

import express from 'express';

router.use(express.json());
router.post('/beginRegistration',
 async (req, res) => {
..
})

export default router;

The authn.js file also makes use of sessions that are set
up as below. Of note, this is completely insecure code.
You’d want to use secure sessions in production, and you
wouldn’t want to save user information in sessions at all.
But this is demo code.

import session from 'express-session';

router.use(session({
 secret: 'keyboard cat',

®

 The Smart Choice for Text
Retrieval® since 1991

dtSearch.com 1-800-IT-FINDS

dtSearch’s document filters support:
• popular file types
• emails with multilevel attachments
• a wide variety of databases
• web data

Over 25 search options including:
• efficient multithreaded search
• easy multicolor hit-highlighting
• forensics options like credit card search

Developers:
• SDKs for Windows, Linux, macOS
• Cross-platform APIs cover C++, Java

and current .NET
• FAQs on faceted search, granular data

classification, Azure, AWS and more

Visit dtSearch.com for
• hundreds of reviews and case studies
• fully-functional enterprise and

developer evaluations

Instantly Search
Terabytes

16 codemag.com

are libraries and the user interface is super simple. These
files are served without authentication using the three
lines under the set-up middleware comment in Listing 1.

Finally, let’s talk about /libs/user.js. This is my database
of exactly one user. I told you this was demo code. I didn’t
want to bother setting up a database, so I hard-coded a
user here. The code for users.js can be seen in Listing 3.
The thought here is that I’m wiring an application where
the user’s list is already known. Let’s say an admin has
set up the users, and the user is expected to perform reg-
istration followed by log in. During registration, the user
could provide a secret, etc. but I’m not going to bother
with that for demo code. The users.js file creates a JSON
object that acts as my poor-man’s database. Now, given a
username, I can simply look up a user in server-side code,
as below, and work with the user.

const user = users[req.body.username]

I can even modify the user by adding to the Credentials
property, and when I stop debugging, my user object re-
sets back to its original state.

The structure of the user object is driven by the WebAuthn
standard.

The “id” provides the user handle of the user account. A
user handle is an opaque byte sequence with a maximum
size of 64 bytes, and isn’t meant to be displayed to the
user. This ID can be considered unique and decisions are
to be made based on this ID, not based on display name
or name. It’s recommended to use a completely random
value of 64 bytes for this ID. I have hard-coded this to
1234 as a shortcut.

The name and displayName are properties of the user ac-
count during registration, which is a human-palatable
name for the user account, intended only for display.
In my application, I’ve set this to “Sahil Malik”. You can
imagine that in self-service sign ups, the user can specify
their own name.

The credentials property is interesting. It stores the list
of credential objects for the user. For instance, if the
user registers an iCloud passkey, a YubiKey credential,
a Chrome profile passkey, and a BLE and NFC passkey
using their Samsung phone, the user will now have five
credentials for the same RP (relying party). For my ap-
plication, I’m going to restrict the user to only one cre-
dential. If you did have multiple credentials, the server
can specify which credentials are allowed or disallowed.
Additionally, the WebAuthn standard has the ability to
automatically allow the user to pick the last used key, or
to prompt the user to pick from a list of keys, and limit-
ing that list by excluding certain credentials, as needed.

You can imagine that this would be useful where a cer-
tain action can be allowed with an iCloud passkey. But
for certain elevated actions, you require a YubiKey with
attestation, etc. Attestation is built into the FIDO and
WebAuthn protocols, which enables each relying party to
use a cryptographically verified chain of trust from the
device's manufacturer to choose which security keys to
trust, or to be more skeptical of, based on their individual
needs and concerns.

 resave: false,
 saveUninitialized: true
}))

By setting up this code, I can now set a session variable,
as below.

req.session.challenge = response.challenge;
req.session.save();

And this variable can then be read at a later time, like so:

req.session.challenge

Once these routes and login are set up in authn.js, I can
simply import them in server.js, which serves as the main
entry point for my application. The full code for server.js
can be seen in Listing 1. Let’s understand it bit by bit.

At the very top, I’m importing Express, which I intend to
use to set up my basic web app, followed by dotenv, which
helps me work with configuration information. I then im-
port authn.js, which holds my server-side logic for APIs.

I then set up middleware to serve static files. My ap-
plication, as can be seen in Figure 1, consists of an in-
dex.html with some very simple user interface, and three
JavaScript files. You can see the full code for my index.
html file in Listing 2. As can be seen, two of those files

Figure 1: My project
structure

Figure 2: The application user interface in action

import express from 'express';
import dotenv from 'dotenv';
import authn from './libs/authn.js';

const app = express();

// load env
const router = express.Router();
const env = dotenv.config().parsed;

// setup middleware
app.use(express.static('/'))
app.use(express.json());
app.use(express.static('./public'));

app.get('/', function (req, res) {
 res.sendFile('index.html');
});

app.use('/authn', authn);

app.listen(env.RPPort, () => {
 console.log('Your app is listening on port '
 + env.RPPort);
});

Listing 1: The server.js main entry point for my application

Passkey Authentication

17codemag.com

In their current form, passkeys offer no attestation. In en-
terprise scenarios, attestation can be customized and con-
trolled as I blogged about here: https://winsmarts.com/
passkeys-and-enterprise-authentication-750ee6332c25. Al-
ternatively, you can also have pre-registered hardware keys,
so when I mail you a key, you must register the specific key
I mailed you, not just any key you bought from a store. This
can be useful if you wish to have greater confidence in the
hardware keys being used in your enterprise, for instance, if
you don’t want keys with user flashable ROM because that
kind of defeats the purpose. Or you don’t want software
keys because they can be easily shared across the internet.
Locking all that down is what attestation is designed to do.

Another way to look at this is: If you want greater secu-
rity at the risk of usage, you’ll require tighter and more
controlled attestation. But if you wish to have consumer
scenarios and offer the least friction and widest audience,
you’ll require no attestation. Even with no attestation,
you’re still more secure than the nicest, most complex
password you can use. So it’s still a win over what we
do currently. This is why passkeys are sometimes called
password replacement.

For the purposes of this article, though, I’ll require no at-
testation. I hope to talk more about attestation in future
articles.

Before I go much further, let’s talk a bit about the “cre-
dential” object though. The credential object is also ex-
pected to be in a certain format. A user is associated
with an array of credentials, which I will limit to one, for
simplicity. The credential object contains the following
properties: a unique ID identifier, an attestation type,
the type of transport used, credential flags, and related
authenticator information.

The credential object has an ID that uniquely identifies
the credential. If the RP insists on a certain operation
requiring a credential of a certain quality, it can pass
these IDs as an array in the allowedCredentials property
to the client.

Each credential also has an attestationType that identi-
fies the attestation format used by a certain authentica-
tor when the credential was created.

The credential also contains the transport used, which
can be USB (a USB key), NFC (near field communication),
BLE (bluetooth low energy), hybrid (a mixture of one or
more transports), or internal (an authenticator that can-
not be removed from the device).

The credential contains credential flags, which help you
identify whether the user was present or verified during
authentication and registration. Presence means that the
user has to touch a key, and verification means that the
user has to touch a key and prove who they are via a PIN
or biometrics. Additionally, a key can be back-up eligible,
which determines whether a key can synch between de-
vices, such as iCloud passkeys.

Finally, there’s authenticator-related information for each
credential, which consists of several items. Authentica-
tor-related information includes an AAGUID (authentica-
tor attestation global unique identifier) that’s the unique

<!DOCTYPE html>
<html lang="en">

<head></head>

<body>
 <input type="text" id="username"
 value="sahil@localhost.com" />
 <button id="registerButton">Register</button>
 <button id="loginButton">Login</button>

 <pre><div id="userMessage"></div></pre>

 <script src="/js/base64Url.js"></script>
 <script src="/js/jquery.js"></script>
 <script src="/js/client.js"></script>
</body>

</html>

Listing 2: Appsettings.json

let users = {
 "sahil@localhost.com" : {
 id: "1234",
 name : "Sahil Malik",
 displayName: "Sahil Malik",
 credentials: []
 }
}

export default users

Listing 3: users.js

identifier stored as an array of the authenticator model
being sought.

The authenticator information also includes signCount
(the signature counter value) and clone warnings, which
help the RP detect cloned keys. With each new log-in
operation, the RP compares the stored signCount value
with the new signCount value returned in the assertion’s
authenticator data. If this new signCount value is less
than or equal to the stored value, a cloned authenticator
may exist, or the authenticator may be malfunctioning.
The clone warning is a signal that the authenticator may
be cloned; in other words, at least two copies of the cre-
dential private key may exist and are being used in par-
allel. RPs should incorporate this information into their
risk scoring. Whether the RP updates the stored signCount
value in this case or not, or fails the authentication cer-
emony or not, is RP-specific.

The authenticator also contains an AuthenticatorAttach-
ment property that allows the RP to express which au-
thenticators the RP prefers, and the client only shows a
preferred list of authenticators to the user. For instance, I
may be okay with using iCloud but not Chrome profiles, etc.

With all this background of my project structure, now let’s
focus on building the application.

Overall Application Logic
My application consists of two steps. The first is registra-
tion, the second is log in. During registration, the client-
side JavaScript is expected to call the beginRegistration

Passkey Authentication

18 codemag.com

attestation expectations based on the stored credential and
generated challenge, and if it passes, the user is logged in.

This is, in summary, how FIDO2 and WebAuthn work. Let’s
see this in action.

Registration
First, let’s focus on registration starting with the client
side. Looking at Listing 2, when the user enters their
userID and presses the Register button, you call the
server-side beginRegistration method, as shown below.

var credOptionsRequest = {
 username: $("#username").val()
};

var credentialCreationOptions =
 await _fetch('/authn/beginRegistration',
 credOptionsRequest);

The _fetch method is a simple helper method I’ve written
to encapsulate a POST call.

The idea is that the client has expressed interest in regis-
tering the username identified and is asking the server for
information on what kind of credential is acceptable. The
server then uses the fido2-lib npm package to generate
a response. Within the response is contained a challenge
and other details, such as the displayName that’s shown to
the user. I’ll omit the Node.js code because you can eas-
ily figure that out using the documentation of the fido2-
lib project. The JSON object of interest that kickstarts the
authentication can be seen in Listing 4. There are a lot
of interesting details here. The “rp” identifies the relying
party that the browser will ensure matches where the site
is running. This pretty much eliminates phishing. The user
property contains information about the user, which is
shown to the user during registration. This can be seen as
the username “Sahil Malik”, as shown in Figure 3.

The challenge is a unique string generated on the server
side that the client must use in generating the credential.
In the endRegistration leg, I’ll verify that the same chal-
lenge was used as was generated on the server. The time-
out mentions the milliseconds within which the registra-
tion must be completed. It requires no attestation, and

{
 "rp": {
 "name": "localhost",
 "id": "localhost"
 },
 "user": {
 "id": "1234",
 "displayName": "Sahil Malik",
 "name": "Sahil Malik"
 },
 "challenge":
 "ihOh6rCD92TOxZNAil1PGG7txJswOqTKSNoItJjG32s",
 "pubKeyCredParams": [
 {
 "type": "public-key",
 "alg": -7
 },
 {
 "type": "public-key",
 "alg": -257
 }
],
 "timeout": 1800000,
 "attestation": "none",
 "authenticatorSelection": {
 "authenticatorAttachment": "platform",
 "requireResidentKey": false,
 "userVerification": "preferred"
 },
 "excludeCredentials": []
}

Listing 4: Begin Registration request

const user = users[req.body.username]
const clientAttestationResponse = { response: {} };
clientAttestationResponse.rawId =
 coerceToArrayBuffer(req.body.rawId, "rawId");
clientAttestationResponse.response.clientDataJSON =
 req.body.response.clientDataJSON;
clientAttestationResponse.response.attestationObject =
 coerceToArrayBuffer(req.body.response.attestationObject,
 "attestationObject");

const attestationExpectations = {
 challenge: req.session.challenge,
 origin: env.RPOrigin,
 factor: "either"
};

const regResult =

 await f2l.attestationResult(
 clientAttestationResponse, attestationExpectations);

const credential = {
 credId: coerceToBase64Url(
 regResult.authnrData.get("credId"), 'credId'),
 publicKey:
 regResult.authnrData.get("credentialPublicKeyPem"),
 aaguid: coerceToBase64Url(
 regResult.authnrData.get("aaguid"), 'aaguid'),
 prevCounter: regResult.authnrData.get("counter"),
 flags: regResult.authnrData.get("flags"),
 type: 'public-key'
};

user.credentials.push(credential)

Listing 5: End Registration

API, which generates a challenge on the server side along
with other preferences that the RP requires for an accept-
able credential. The client then calls the navigator.creden-
tials.create API to generate a credential that’s passed to
the server in the endRegistration call. The endRegistra-
tion call validates if the generated credential is acceptable,
and if it is, it saves the credential on the user object and
informs the user of a successful registration.

Once the user is registered, the user can attempt to log in.
Logging in, again, has two steps. The first is a call to the
beginLogin API, which generates a challenge on the server
and passes acceptable authenticator details to the client.
The client then uses the navigator.credentials.get method
according to the return value of log-in expectations from be-
ginLogin, and sends back the proof of authentication to the
server in the endLogin API call. This is then verified against

Passkey Authentication

19codemag.com

performs TouchID (or FaceID if you are on iOS or Windows
Hello on Windows, etc.), and this generates a credential.

This credential is sent to the server in the /endRegistra-
tion call and can be seen below.

{
 "username": "sahil@localhost.com",
 "id": "wTRhXyFYEo3w15Oxpg-XYZSyYDg",
 "rawId": "wTRhXyFYEo3w15Oxpg-XYZSyYDg",
 "type": "public-key",
 "response": {
 "attestationObject": "..",
 "clientDataJSON": ".."
 }
}

The attestationObject and clientDataJSON properties help
the server verify if this registration is valid, and if so,
it’s added to the credential array on the user object. The

I’ve specified certain characteristics of the authenticator
I’m okay with. Specifically, I’m saying that I want plat-
form authenticator. Because I’m on a Mac, I’m prompted
to use TouchID, as can be seen in Figure 3. Now the user

Figure 4: Passkey in MacOS

Figure 3: The registration dialog

Figure 5: Passkey in iOS

Passkey Authentication

20 codemag.com

code for verifying and adding the credential to the user
object can be seen in Listing 5. As can be seen in List-
ing 5, a successful registration is sent to the client. In
the real world, you’ll just say “successful registration.”
The public key is something you can use to verify future
authentications. Although you shouldn’t just share it with
the client on the browser, leaking it isn’t a security issue.
This is built on an asymmetric key signature; as long as
the private key is safe, you are good.

Because the registration succeeded, a passkey has now
been created for me. I can verify this in my MacOS system
settings, as can be seen in Figure 4.

Additionally, because this is a passkey, I can also see it
synched to my iPhone in the same iCloud account, as can
be seen in Figure 5.

This is the beauty of this standard. Sign up was easy, I
can use the credential anywhere, and there’s no password
to remember. Yay!

Authentication
With registration done, now let’s focus on authentication.

To perform authentication, the user is expected to enter
their username, which then sends off a call to the begin-
Login method. The beginLogin method simply communi-
cates to the server that a certain user is trying to sign in.

The server is now expected to generate and remember a
challenge, and for the user to specify certain authentica-
tion requirements, which are communicated back to the
client, as can be seen in Listing 6. Using these specifica-
tions communicated by the server, the client makes a call
to the navigator.credentials.get method. This shows the
user a login dialog box, as can be seen in Figure 6.

What if I‘d said “authenticatorAttachment” to be cross-
platform? Well, then you’d be prompted with a different
dialog box, one that prompts you to use NFC or BLE, and
lets you scan a QR code, etc., to complete authentication
on a phone. Or perhaps a Chrome profile. Note that I’ve
also included the allowCredentials object to limit which
credentials my RP is okay accepting.

The user is now expected to complete the touchID opera-
tion, which generates an assertion response that’s sent
to the server in the endLogin API call. Here the server
validates the assertion received with what you expect.
This can be seen in Listing 7. And if the assertion suc-
ceeds, you send back the authentication result, as can be
seen in Figure 7.

Congratulations! You just registered and signed in using
a passkey.

Summary
Perhaps the expression “passwordless” has been over-
used in our industry. We’ve seen major companies use
mobile authenticator apps and call them passwordless.
Okay, they were technically passwordless, but it isn't un-
til FIDO2, that we have true password replacements that
are universally accepted across the industry. With the

{
 "challenge": "..",
 "timeout": 1800000,
 "rpId": "localhost",
 "userVerification": "preferred",
 "allowCredentials": [
 {
 "credId": "wTRhXyFYEo3w15Oxpg-XYZSyYDg",
 "publicKey": "..",
 "aaguid": "-_wwBxVOTsyMC24CBVfXvQ",
 "prevCounter": 0,
 "flags": {},
 "type": "public-key"
 }
],
 "authenticatorAttachment": "platform"
}

Listing 6: Initiating the login sequence

Figure 6: Passkey login dialogbox on MacOS

Figure 7: Successful authentication result

SPONSORED SIDEBAR

Ready to Modernize
a Legacy App?

Need advice on migrating
yesterday’s legacy
applications to today’s
modern platforms? Take
advantage of CODE
Consulting’s years of
experience and contact us
today to schedule a free
consulting call to discuss
your options. No strings.
No commitment.
Nothing to buy.
For more information,
visit www.codemag.com/
consulting or email us at
info@codemag.com.

Passkey Authentication

21codemag.com

advent of passkeys, I fully expect that every major site
that cares about security will adopt it as the standard
replacement for passwords. As users and organizations
get comfortable with the standard, I also expect this
to get widely adopted in enterprises in more secure im-
plementations that support attestation and end-to-end
supply chain security.

I think it’s also important to realize that passkeys are a
password replacement. They are better than any password
that you can come up with. Used alone, they’re still just
a password replacement. When you replace them with
a hardware-based authenticator, you’re already using a
much more secure mechanism that cannot be scaled in
an attack. Remember that passkeys can be shared via
iCloud family sharing, and your passkey is just as secure
as your iCloud account. In contrast, hardware key sharing
is not an attack that can scale easily and certainly can-
not be shared across the internet. Additionally certain
hardware keys now support biometrics or entering pins.
This makes them equivalent to multi-factor authentica-
tion, something you have—the key—and something you
know—the pin.

However, nothing stops you from using passkey as one of
the factors in authentication. Really, what stops you from
accepting a user's passkey and then prompting them from
an MFA prompt on their mobile phone using an OAuth-
compatible app? Isn't this multi-factor, where you’ve
replaced one of the weak factors, the password, with a
much more secure replacement, which is passkey?

Implementations like this are going to offer user con-
venience and greater security in one swoop. This is the
holy grail of security where you provide solutions that are
convenient, so users don't work around them, and that
are secure by design. This is why I feel the standard will
gain universal acceptance and why the entire industry is
behind it.

I hope you found this article useful. I know this was a
little bit code heavy, but we're developers and we like to
see code, right?

Until next time, secure coding.

const user = users[req.body.username]
const assertionExpectations = {
 challenge: req.session.challenge,
 origin: env.RPOrigin,
 factor: 'either',
 publicKey: user.credentials[0].publicKey,
 prevCounter: user.credentials[0].prevCounter,
 userHandle: req.body.response.userHandle
};
req.body.id =
 coerceToArrayBuffer(req.body.id, "id");
req.body.rawId =
 coerceToArrayBuffer(req.body.rawId, "rawId");
const authnResult = await
 f2l.assertionResult(
 req.body, assertionExpectations);
res.json(authnResult);

Listing 7: Validating an assertion

Advertisers Index

CODE Consulting--AI Services
	 www.codemag.com/ai-services� 2

CODE Consulting
	 www.codemag.com/Code� 75

CODE Staffing
	 www.codemag.com/staffing� 76

dtSearch
	 www.dtSearch.com� 15

DevIntersection
	 www.devintersection.com� 39

LEAD Technologies
	 www.leadtools.com� 5

Raven DB
	 www.ravendb.net� 7

ADVERTISERS INDEX

Advertising Sales:
Tammy Ferguson
832-717-4445 ext 26
tammy@codemag.com

This listing is provided as a courtesy
to our readers and advertisers.
The publisher assumes no responsi-
bility for errors or omissions.� Sahil Malik

�

Passkey Authentication

ONLINE QUICK ID 2403041

You’re Missing Out on
Open-Source LLMs!
By now, I’m certain, you tried one of the many online services that allow you to
use a Large Language Model. If so, you might even be familiar with responses
like, “I’m sorry, but I cannot provide assistance on …”. In this practical guide,
I will talk about why open-source language models are important, why you’d
want to use them, how to choose and where to find a model, and how to run
them on your own local or hosted machine.

22 You’re Missing Out on Open-Source LLMs codemag.com

23You’re Missing Out on Open-Source LLMscodemag.com

codemag.com24 You’re Missing Out on Open-Source LLMs!

This is not only important from an engineering stand-
point (we do like to tinker after all), but with the re-
lease of research papers alongside models and training
datasets, the community has picked up on many of these
developments and improved on them. I’d be genuinely
surprised if the current state-of-the-art models released
as paid offerings would be as advanced as they are if the
open-source community didn’t exist.

Open-source proves, yet again, how
important freely accessible software is.

Open source also prevents a few big players from captur-
ing the technology and dictating what LLMs look like.
The motives and priorities of a large company often don’t
align with those of the people, after all. A democratized
landscape with openly accessible tools evens out the
playing field, even if there is a limitation based on the
computing power that’s available for training foundation
models.

You Had My Curiosity,
but Now You Have My Attention
If you have the impression that using open-source LLMs
is more complicated than opening a website and asking a
question, you’re absolutely right! Don’t let that scare you
away though, it’s well worth understanding the following
terms, ideas, and principles.

I’ll start by looking at some of the reasons why you, as
a developer or organization, might want to use an open-
source LLM over a paid offering by OpenAI or Microsoft.
Afterward, I’ll discuss the types of models that exist, the
variations they may come in, and where to find and how
to choose models. I’ll conclude by presenting some ways
to get started running LLMs using a few different applica-
tions you can download and use for free.

We Do What We Must Because We Can
As with the adoption of any other new technology, you
must be able to evaluate whether it’s the right one for your
use case. Using something just because you can is rarely
a good idea. You might look at these arguments and con-
clude that a SaaS offering is serving you just fine. Be aware
that although the following are important considerations
to keep in mind, they are, by far, not the only ones.

Using something just because
you can is rarely a good idea.

Control
As with any SaaS offering out there, it’s out of your con-
trol whether the behavior of features changes. This is
especially true for the ever-evolving LLMs and the exact
thing that drove my attention to open-source LLMs.

Let’s be clear, crafting narratives isn’t my forte—hence
my role as a software developer and not the next Tolk-
ien. But I do enjoy high fantasy and I’ll admit that I’ve
spent many a night playing Dungeons and Dragons with
my friends. You can imagine how excited I was when I
discovered ChatGPT in early 2023, promising an unending
well of ideas for characters, villains, and sticky situations
for my players’ intrepid heroes to get out of.

Until one day, I tried to create some mean gangsters to
accost my players in a big city and it only said, “I’m
sorry, but as an AI language model, it is not appropriate
to glorify criminal behavior, even in a fictional setting.”
I pleaded with the AI, tried to get around its safety mea-
sures, and cried out to the silicon gods! It kept insisting
that we must be nice to each other.

ChatGPT kept insisting that we
must be nice to each other.

Defeated and disappointed, I thought about how to crack
open that vault of creativity in my head. My imaginary
blowtorches and thief’s tools were no match for hardened
steel.

Then I discovered that some very smart people had
trained open-source language models that anyone could
run with the right hardware and applications. Finally, the
promise of unrestricted models that don’t tell you what
you can and can’t do! Interesting and evil villains may
terrorize the free citizens of the Sword Coast yet again
and my campaign lives on!

It's Dangerous to Go Alone:
A Collaborative Journey
In the following months, I closely followed the news
and updates surrounding this very active community of
software engineers and data scientists with wonder and
admiration, and a good measure of perplexity due to the
new concepts and lingo surrounding all of it. It motivated
me to learn more. I listened to Andrej Karpathy explaining
how to build GPT, learned what difference training data
and methodologies make, and what all these parameters
beyond “temperature” mean. But mainly, I learned how to
start using this amazing technology in my own work. And
in the programming language that I like the most (which
is C#, of course).

A lot has happened in the open-source LLM space since
then, more than I could put down in just one article. And
with the current speed of change, it would likely be dated
by the time this was printed and read by anyone anyway.
One thing is clear to me though: Open source proves yet
again how important freely accessible software is. With
the gracious support of large companies like Meta and
Microsoft, and smaller players like Mistral.AI, et al., who
all released foundation models, the community fine-tunes
and distributes models for specific use cases and offers an
alternative to the closed-source, paid models that OpenAI
or Google offer.

Philipp Bauer
pbauer@codemag.com

Philipp is an accomplished
senior software developer
with over 15 years of profes-
sional experience in website
and application develop-
ment. With an educational
background in computer sci-
ences and media design, he
has honed his skills in full-
stack development, server
administration, and network
management. Philipp’s keen
eye for design translates
into user interfaces that are
both functional and visually
appealing.

Philipp experiments with
various ways of implement-
ing emerging AI technol-
ogy, like ChatGPT and lo-
cally executable LLMs and
speech-to-text models like
OpenAI Whisper and Vector
DBs, to create new and
exciting ways of interact-
ing with software.

A strong advocate for the
use of open-source soft-
ware, he’s contributed to
several projects, including
Photino, a cross-platform
library for .NET that enables
developers to build native
user interfaces for Windows,
macOS, and Linux.

codemag.com 25You’re Missing Out on Open-Source LLMs!

Privacy and Compliance
The safety of customer data and intellectual property is
still a big issue for many when it comes to using LLMs
as a service. It was the main concern I heard when talk-
ing to people about using LLMs at 2023’s DEVintersection
conference. I understand where the uneasiness comes
from. Especially when you consider uploading internal
documents for processing and retrieval for using, for
example, Retrieval Augmented Generation (RAG) appli-
cations, wherein the prospect of having sensitive data
“out there” doesn’t sit well. Data breaches seem to be a
matter of “when” and not “if” these days, and this can be
the singular issue that excludes a SaaS offering for some
companies.

Another issue may be compliance agreements. They may
either be a big threshold for adoption or rule out using
third-party providers altogether. If your own environment
is already set up to be compliant, it might just be easier
to use a locally run open-source LLM. It might also be
the only way to stay compliant with local laws that for-
bid you from sending user data into other jurisdictions,
like the United States (think GDPR), either by using your
own servers or hosting a model with your local datacenter
provider.

Offline Usage
This last one is both an argument for resilience of your
applications and an excited look into the future of how
we use LLMs as everyday assistants.

It’s an enormously difficult task to provide consistent ser-
vice to millions of people using LLMs in the cloud. The in-
frastructure needed for just this singular service is massive.
And with scale and complexity, the likelihood of outages
grows too. This is true for any SaaS offering, of course, and
so the same considerations must be made for LLM services.
For most use-cases, it’s best practice to design your appli-
cation with resilience in mind, that is, offering a degraded
feature set and cache requests to the affected service for
later. Failover to another region is another good way to
handle service interruptions where possible.

You might have a use-case, though, that requires un-
interrupted availability. This may be especially true for
applications out in the field where cellular service is un-
available (welcome to rural America) or if you have an ap-
plication that needs to be available in disaster scenarios.
With LLMs that can run on commodity hardware, this is
a possibility today. Chatting with an LLM during a recent
flight without internet access was a real head-turner!

Small models will make
the personal assistants on our
phones incredibly powerful.

And this is why I get excited for the future of locally run
LLMs. Small models become more and more capable and
will make the personal assistants on our phones incred-
ibly powerful, while keeping our private information out
of the hands of data brokers.

SaaS offerings must evolve with the attacks leveraged
against them and their safety alignment must be updated
to thwart new prompting attacks that expose dangerous
and unwanted behavior. They also must improve perfor-
mance through continued fine-tuning of their models to
prevent falling behind the competition.

These kinds of tweaks can influence the overall behavior
of the model and break the workflows that you imple-
mented on your end, requiring you or your team to con-
stantly evaluate and update the prompts you use in your
application.

I don’t just claim this based on my own observations. A
study called “How Is ChatGPT’s Behavior Changing over
Time?” released by a team at Stanford University and UC
Berkeley demonstrated this behavior. They asked a set
of questions in March 2023 and then in June 2023. The
answers were recorded and compared, showing significant
differences between the model versions. They concluded
that:

“Our findings demonstrate that the behavior of
GPT-3.5 and GPT-4 has varied significantly over
a relatively short amount of time. This highlights
the need to continuously evaluate and assess the
behavior of LLM drifts in applications, especially
as it is not transparent how LLMs such as ChatGPT
are updated over time. […] Improving the mod-
el’s performance on some tasks, for example with
fine-tuning on additional data, can have unex-
pected side effects on its behavior in other tasks.”
(https://arxiv.org/abs/2307.09009)

To reiterate, fine-tuning to improve performance and up-
dating model alignment is good and necessary work! But
safety alignment, especially, is a tough issue to solve and
hard to get right for everyone. You might end up with a
use case that works at first but then breaks over time
because it’s deemed dangerous or has unwanted behavior
even though it’s completely legitimate.

You will be responsible for
providing a certain level of
safety and alignment.

Open-source LLMs don’t change once they’re download-
ed, of course. And you can easily find models that are un-
censored and have no quarrels responding to any and all
of your questions. There are also models that come with
a certain level of pre-trained safety. These models aren’t
guaranteed to be as effective at resisting attacks, like
the infamous DAN (Do Anything Now) jailbreak, and show
that open-source LLMs can be a double-edged sword. On
the one hand, you’re not limited by the safety alignment
of the large SaaS providers. On the other hand, you’ll be
responsible for providing a certain level of safety and
alignment that you or your organization can be com-
fortable with. Especially when the product you imple-
ment an open-source LLM into is made available to the
public!

codemag.com

Build local LLM Apps
in .NET

This is the first part of a series
of articles. The next article will
focus on building applications
in C# and .NET that can use an
open-source LLM directly on
your machine instead of using
an external API. Look out for
that in another issue of CODE
Magazine!

The amazing fact about fine-tuning models is that it’s far
less resource-intensive than creating a foundation model.
It’s quite achievable for individuals and companies to
train a foundation model on the specific use case they
want to use it for.

Besides the chat-style behavior, the next most common
fine-tune you can find is for instructions. These models
are trained to give answers and adhere to an instruction
given to them. The notable difference is that chat mod-
els may continue to elaborate, when tasked, to produce
a specific output like, for example, “yes-” or “no-” only
answers. Instruction fine-tuned models typically adhere
more to the given restriction.

Navigating Models on Hugging Face
Llama, Alpaca, Platypus, Orca—all of these and others
refer to models, training datasets, or techniques used
to create a dataset. Each model on Hugging Face has a
“model card” that includes these details and more. An im-
portant piece of information to look out for is the prompt
template that the model was trained on. These templates
separate the system, user, and assistant messages from
each other. With this, the model isn’t getting confused
about who said what and can correctly infer from previ-
ous conversations. If no specific template is mentioned,
the template of the model’s foundation model is usually
a safe bet.

Comparing Llamas and Alpacas
LLMs are frequently tested against manual and automated
suites of tests that can give us a rough idea of their ca-
pabilities.

The “Open LLM Leaderboard” on Hugging Face is a decent
first place to get started in the search for an LLM (see
https://bit.ly/llmleaderboard). It lets you filter by model
type, number of parameters (size), and precision, and you
can sort by an average score or specific test scores. Be aware
that there’s some criticism around this leaderboard because
there are models that try to game the tests by including both
the questions and the answers in their training data. The
community flags these models for this behavior and excludes
them by default. But there’s still a trend away from this lead-
erboard as a reliable resource at the moment.

Another interesting leaderboard can be found on the
Chatbot Arena website (https://arena.lmsys.org). Chat-
bot Arena generates its rankings by pitting two random
LLMs against each other that both get the same user
prompt. Users don’t know which models are replying. They
can then vote for which model output they like better.
Votes are aggregated into a score on the leaderboard.
Since this is not a uniform test that is applied to all mod-
els equally, it relies on the average subjective experience
of the crowd. It can only give a general comparison but
can’t discern the strengths and weaknesses of a model
(e. g., writing vs. coding).

The best source for model comparisons is the “LocalL-
LaMA” subreddit (https://reddit.com/r/LocalLLaMA).
Searching for “comparison” in this sub will return several
users’ own comparison results. It’s worth looking at these
because they often give a detailed description of the re-
sults and aren’t as susceptible to manipulation through
training on test questions as the standardized tests of

Additional Considerations
Beyond these three considerations, you might also find
that using open-source models on your own hardware can
save you money, especially when a SaaS offering is based
on a per-user basis and an equivalent open-source option
is available to you. You may also consider fine-tuning a
model on your own data, and, although this is possible
using OpenAI and Azure OpenAI, data privacy and compli-
ance issues might be an issue here as well. Then there are
deployment considerations, which is a highly individual
and use-case driven issue that will have to be analyzed
based on your needs.

Not All models Are Created Equal
When you look at the text generation model catalogue on
Hugging Face (huggingface.co) you might wonder how to
choose from the over 37,000 models that are currently
available. I remember feeling quite overwhelmed at first
and wasn’t sure where to begin. After understanding the
process of how these models are created and where to
find good comparisons, it was easy to find the right mod-
el for my use cases.

Building a Strong Foundation
It all starts with a foundation model. These are models
trained by organizations that can afford to buy or rent
large amounts of hardware and pay for the necessary
steps that come before the actual training.

Let’s take Meta’s popular Llama 2 model as an example.
It was trained on an immense amount of 2 trillion tokens
(roughly 500 billion words). These text sources needed to
be collected from various sources and then pre-processed
before they could be used to train the model. The data
used for this training is largely unstructured and unla-
beled text. The training of the three model sizes of 7, 13,
and 70 billion parameters (more on that later) that Meta
released took a combined 3.3 million GPU hours.

The training took a combined
3.3 million GPU hours.

At this point, the model has a lot of knowledge, but it
doesn’t quite know what to do with it. If you asked it a
question it would struggle to give you a coherent answer.
This is where the next training step comes in.

Learning the Ropes
A foundation (or pre-trained) model needs to learn how
it’s expected to behave when the user asks a question.
The most familiar use case right now is a chat-style be-
havior. To learn how to have a proper conversation, a
model is trained on curated conversational datasets.
The datasets for this supervised fine-tuning step are
labeled to communicate the desired outcome for each
instance of input data. Further Reinforcement Learning
with Human Feedback (RLHF) and other techniques can
be used as another step to improve the output quality
and align the model according to behavior and safety
requirements.

26 You’re Missing Out on Open-Source LLMs!

melan
Comment on Text
Change from "Apps" to "apps" (lowercase).

melan
Comment on Text
Change from "models" to "Models" (upper case).

codemag.com

dependent on the precision of the model weights, its ar-
chitecture, and the length of the user input.

There is a way to reduce the memory requirements, though.

Accelerating LLMs with Quantization
Quantization is a technique that aims to minimize the nu-
merical precision required for weights and activations while
preserving the overall functionality of an LLM. This ap-
proach enables significant enhancements in computational
efficiency, memory savings, and reduced energy consump-
tion. As a result, quantized models are highly beneficial
for deploying LLMs on devices with limited resources such
as edge computing or mobile devices. However, these ben-
efits may be accompanied by limitations, such as loss of
precision, which could result in slight accuracy reductions
compared to the original high-precision models.

In most cases, the benefit of lower hardware requirements
beats the slight reduction in model performance. Instead
of using 16-bit floating points per weight and activa-
tions, a quantized model may use 8-bit integers, all the
way down to 2-bit integers. The lower the precision, the
higher the impact on the model, though.

The 8-bit and 5-bit (like the mixed 5_K_M quant) are the
most popular options for quantization these days. You can
change the formula from above slightly to calculate the
size of quantized models.

The formula for size in GB is: # of parameters (bytes) / 8
(bit) * quant size (in bit) / (1000^3) = x GB

For a 7B parameter model with 5-bit (5_K_M, ~5.67 bit/
weight) quantization, this means: (7 * 10^9) / 8 * 5.67
/ (1000^3) = 4.62 GB

Compared to the 16-bit model, this is roughly a three-
times reduction in size!

Quantized models come as GGUF (mainly CPU/macOS
use), AWQ, and GPTQ (4bit/8bit GPU use) formats. Tom
Jobbins, also known in the community as TheBloke, is
a well-recognized contributor who distributes quantized
versions of models on Hugging Face (https://hugging-
face.co/TheBloke).

Hardware Requirements for Local Inference
One, if not the biggest, factor for the hardware required
for inference using LLMs is the available memory band-
width between the memory and processor of the system.
The large number of mathematical operations performed
during inference demand frequent reading and writing of
data into the memory.

Although it’s possible to run inference on CPU and
RAM, it’s not the preferred way because the bandwidth
per DIMM is limited to a maximum of 64GB/s for DDR5
RAM and the total bandwidth is capped by the proces-
sor (e. g., 89.6GB/s for the current Intel i9 14900K). A
modern consumer graphics card, like the NVIDIA GeForce
RTX 30xx/40xx series, or one of the data center graph-
ics cards, like the A100 or H100 series, are the preferred
choices for running LLMs. These top out at ~1,008GB/s
(RTX 4090 24GB), 2,039GB/s (A100 80GB) and 3,072GB/s
(H100 80GB) respectively.

the Open LLM Leaderboard. This is also the place to find
general information about LLMs and the latest news and
developments in the field.

In the end, it’s always important to test the chosen model
on the intended use case.

Bring Your Own Machine
Now you know what the different types of models are,
where to find them, and how to choose one based on your
use-case and openly accessible comparisons. With that
out of the way, I can turn to the more practical portion
in the quest to run LLMs. In this section of the article,
I’ll talk about hardware requirements and (currently) sup-
ported hardware and the software needed to run an LLM.

I’ll begin by looking at the disk and memory size require-
ments of LLMs and a technique called quantization that
reduces these requirements.

One Size Does Not Fit All
When discussing LLM sizes, it’s crucial to understand that
"size" refers to the number of parameters a specific model
contains. Parameters in LLMs are adjustable components
or weights that influence behavior and performance dur-
ing tasks, such as text generation and translation. They
represent connections between neurons in a neural net-
work architecture and enable it to learn complex relation-
ships and patterns within language.

In the landscape of LLMs, size is a significant factor in
determining their capabilities. Although it may seem that
the larger model always performs better, selecting the ap-
propriate size for your use case requires careful consider-
ation. Larger models require more memory and processing
power. Smaller models may be sufficient for your use case
while being able to deliver faster response times on a
smaller operational budget.

The general rule is that larger models tend to excel at
tackling more complex tasks and are suitable for creative
writing applications due to their ability to make intricate
connections through their vast number of parameters and
layers. However, small yet powerful alternatives should
not be overlooked, as they often surpass expectations
by delivering results comparable to those generated by
larger counterparts for certain applications.

Generally, you’ll find models ranging from 7B(illion) to 70B
parameters with exceptions below and above these sizes.
Typical counts are 7B, 13B, 33B, 65B, and 70B parameters.

The required size (in bytes) on disk can be roughly calcu-
lated by multiplying the parameter size by two, because
each parameter requires two bytes to represent a param-
eter as a 16-bit floating point number.

The formula for the size in GB is: # of parameters* 2
(byte) / (1000^3) = x GB

For a 7B parameter model, this means: (7 * 10^9) * 2 /
(1000^3) = 14.00 GB

The required memory needed to run a model is higher
still. The exact amount needed is, among other things,

27You’re Missing Out on Open-Source LLMs!

codemag.com

architecture. The M1 and M2 Pro have 205GB/s memory
bandwidth (M3 154GB/s) and can be equipped with up to
32GB (M3 36GB) RAM, of which ~24GB can be used for
an LLM. All M Max series processors come with 410GB/s
bandwidth and up to 128GB RAM, and the available M1
and M2 Ultra have 820GB/s bandwidth with up to 192GB
RAM. Considering that memory is an expensive and limit-
ing factor for GPUs, this can be an attractive way of eval-
uating large models, serving LLMs for small teams, or for
applications that don’t experience high request volumes.

I’m using a MacBook Pro with M1 Pro and 32GB RAM for
my experiments and consider it useful for everything from

It's important for a model to fit completely into the avail-
able VRAM of a graphics card to take advantage of the
available memory bandwidth and that it’s not forced to be
split between the graphics card’s and the system’s memo-
ry. While possible, that split incurs a severe performance
penalty due to the aforementioned limitations of CPU and
system RAM. As you can see, a consumer graphics card is
hard pressed to run larger models because it has limited
VRAM. You’ll have to buy multiple cards and distribute the
load to run larger models.

An unlikely but comparatively price-effective competi-
tor is the Apple M-series SoC with their unified memory

Figure 1: Using a vision model in LM Studio

28 You’re Missing Out on Open-Source LLMs!

codemag.com

Common Models

It has become somewhat
difficult to tell all the different
models apart from each
other. As a reference point,
you can take a look at the
list below. You’ll often find a
combination of these in the
name of a model on Hugging
Face.

LLaMA 1 and 2

Falcon

Alpaca

GPT4All

Vicuna

OpenBuddy

Pygmalion

WizardLM

Starcoder

Mistral

StableLM

Deepseek

Mixtral MoE

Phi-2

to-Text, Text-to-Speech, Vector DBs, Stable Diffusion, and
more. And the web UI makes it easy to deploy even on
hosted machines that lack a desktop environment.

Whether you use llama.cpp directly, LM Studio, or the
Text-generation web UI, you’ll download a model, add it
to a specified folder, and select it for inference. You’ll
have the ability to configure a system message of your
choice and set inference parameters like Temperature,
Max Tokens, TopP, TopK, and many more, to fine-tune the
responses before posting your question. The LLM will now
happily respond to your questions.

Conclusion
You have only reached the first peak on your journey into
the land of open-source LLMs. From here, you can see
the far-stretched mountain ranges before you that hold
endless possibilities for exploration and discovery. There
are many ways to go from here, whether you decide to dig
into research papers and learn more about the different
techniques used to improve LLMs, start building an ap-
plication to improve an internal process, or explore the
capabilities held by the largest of available open-source
LLMs and the challenges that come with running them.

If you are curious about using LLMs in your C# applica-
tions, look out for a guide on using this exciting technol-
ogy in one of the next issues of CODE Magazine!

16-bit 7B models to 4-bit quantized versions of 33B pa-
rameter models.

If you’re looking at evaluating and running large models,
there’s an alternative to the large upfront investment into
the hardware. Several hosting services have cropped up
that sell computing on an hourly basis (usually billed by
the minute or second). One of these services is RunPod
(https://www.runpod.io) that offers secure environments
to run workloads on high-end data center GPUs like the
H100. These types of services are not only useful for
running inference on models, but also for fine-tuning a
model to your specific needs.

Are We There Yet?
You’ve learned about the most important aspects of run-
ning open-source LLMs at this point, including why you’d
use one, what different types there are, how to choose
from the thousands of models, and what hardware is re-
quired.

Now that we’re nearing the end of our journey together,
one last question remains: What tools can you use to run
an LLM on your machine?

llama.cpp is the workhorse of many open-source LLM
projects (https://github.com/ggerganov/llama.cpp).
It’s a C/C++ library that provides support for LLaMA and
many other model architectures, even multi-modal (vi-
sion) models. It made macOS a first-class citizen for LLMs,
akin to Windows and Linux that support NVIDIA and AMD
GPUs. A strong community works tirelessly to improve it.
Several provided examples give you a way to explore its
capabilities and a server provides an OpenAI API compat-
ible web API. This is the choice for you if you want to
implement an LLM directly into your application, either
in C/C++ or with one of the many bindings for languages
from C# to Rust.

The most convenient way to get started is LM Studio for
Windows and macOS (https://lmstudio.ai). This closed-
source, non-commercial-use app allows the user to search
the Hugging Face database for a model and download it
directly while helping with the selection of the correct
format for your platform. It provides an intuitive interface
and can expose an OpenAI API-compatible server you can
develop applications against. It features multi-modal
model support for vision models that can analyze and
describe images that are sent along with a text-prompt.
Under the hood, it uses the llama.cpp package to provide
inference (see Figure 1).

For more advanced use-cases, the Oobabooga Text genera-
tion web UI is a great choice (https://github.com/ooba-
booga/text-generation-webui). It can use multiple model
back-ends beyond llama.cpp, adding to its versatility. It
supports extensions (built-in and community) for Speech-

� Philipp Bauer
�

An unlikely but comparatively
price-effective competitor is
the Apple M-series SoC.

29You’re Missing Out on Open-Source LLMs!

30 codemag.comPrototyping LangChain Applications Visually Using Flowise

ONLINE QUICK ID 2403051

Prototyping LangChain
Applications Visually Using Flowise
In my previous article in the July/August 2023 issue of CODE Magazine (https://www.codemag.com/Article/2307041/
An-Introduction-to-OpenAI-Services), I gave you an introduction to OpenAI services. One of the topics I discussed was how to use
LangChain to build an LLM-based application. LangChain is a framework designed to simplify the creation of applications using

Large Language Models. It “chains” together various com-
ponents to create compelling AI applications that can
query vast amounts of up-to-date data.

LangChain is a framework
designed to simplify the creation of
applications using Large Language
Models. It “chains” together various
components to create compelling
AI applications that can query vast
amounts of up-to-date data.

To the novice, LangChain can be quite overwhelming and
overly complex. And unless you are a developer, Lang-
Chain remains largely out of reach to most people—until
Flowise (https://flowiseai.com).

Flowise is a low-code/no code drag-and-drop tool that makes
it easy for people (programmers and non-programmers alike)
to visualize and build LLM apps. Instead of writing code us-
ing the LangChain framework, you can just drag-and-drop
components (known as nodes in Flowise) and connect them.
I find it very useful to get started, and as I explore deeper,
it makes me appreciate LangChain even more.

In this article, I’ll walk you through some of the key fea-
tures of Flowise. In particular, you’ll build a number of
fun apps, including how to build chatbots that works like
ChatGPT, an app that queries your own data, and an app
that’s able to analyze your CSV data files. Without further
delay, let’s go!

Installing Flowise Locally
There are a couple of ways to get Flowise up and running.
Let’s go through the first method to install Flowise on
your machine. As Flowise is built using Node.js, you need
to first install Node.js.

Prerequisites: Installing Node.js
The easiest way to install Node.js is to install nvm (Node
Version Manager) first. nvm is a tool for managing differ-
ent versions of Node.js. It:

•	 Helps you manage and switch between different
Node.js versions with ease.

•	 Provides a command line where you can install dif-
ferent versions with a single command, set a de-
fault, switch between them and more.

For macOS, type the following command in Terminal to
install nvm:

$ curl -o-
https://raw.githubusercontent.com/
nvm-sh/nvm/v0.39.2/install.sh | bash

You can also get the above command from https://github.
com/creationix/nvm, where you can find the command to
install the latest version of nvm.

Once the installation is done, type the following com-
mand in Terminal:

$ nano ~/.zshrc

Append the following lines to the .zshrc file and save it:

put this in one line
export NVM_DIR=
 "$([-z "${XDG_CONFIG_HOME-}"] &&
 printf %s "${HOME}/.nvm" || printf %s
 "${XDG_CONFIG_HOME}/nvm")"

put this in one line
[-s "$NVM_DIR/nvm.sh"] &&
 \. "$NVM_DIR/nvm.sh"

Restart Terminal.

For Windows, download the latest nvm-setup.exe file
from https://github.com/coreybutler/nvm-windows/
releases. Then, double-click the nvm-setup.exe file and
install nvm in C:\nvm and nodejs in C:\Program Files\
nodejs.

It’s important that the installation
path for nvm have no spaces or else
you’ll have problems using nvm
later on.

Once nvm is installed, you can install Node.js. To install
the latest version of Node.js, use the following com-
mand:

Wei-Meng Lee
weimenglee@learn2develop.net
http://www.learn2develop.net
@weimenglee

Wei-Meng Lee is a
technologist and founder
of Developer Learning
Solutions (http://www.
learn2develop.net),
a technology company
specializing in hands-on
training on the latest
technologies. Wei-Meng
has many years of training
experience and his train-
ing courses place special
emphasis on the learning-
by-doing approach.
His hands-on approach
to learning programming
makes understanding the
subject much easier than
reading books, tutorials,
and documentation.
His name regularly appears
in online and print publi-
cations such as DevX.com,
MobiForge.com, and
CODE Magazine.

31codemag.com Prototyping LangChain Applications Visually Using Flowise

$ mkdir flowise
cd flowise

Create a file named Dockerfile and populate it with the con-
tent, as shown in Listing 1.

The Dockerfile contains the instructions to build a Docker image.

Next, type the following command to build a Docker image
named flowise:

$ docker build --no-cache -t flowise .

$ nvm install node

To use the latest version of Node.js, use the following
command:

$ nvm use node

Installing Flowise
To install Flowise, you can use npm (Node Package Man-
ager), a tool that comes with Node.js. Type the following
command in Terminal to install Flowise using npm:

$ npm install -g flowise

Once the installation is done, you can now start up Flo-
wise using the following command:

$ npx flowise start

Installing Flowise Using Docker
The second method to install Flowise is to use Docker. For
this, I’m going to assume that you already have Docker
installed and that you have some basic knowledge of it.
If you are new to Docker, refer to my article Introduction
to Containerization Using Docker in the March/April
2021 issue of CODE Magazine (https://www.codemag.
com/Article/2103061/Introduction-to-Containerization-
Using-Docker).

In Terminal (or Command Prompt), create a new directory
and change into this new directory:

FROM node:18-alpine

USER root

RUN apk add --no-cache git
RUN apk add --no-cache python3 py3-pip make g++
needed for pdfjs-dist
RUN apk add --no-cache build-base cairo-dev pango-dev

Install Chromium
RUN apk add --no-cache chromium

ENV PUPPETEER_SKIP_DOWNLOAD=true
ENV PUPPETEER_EXECUTABLE_PATH=/usr/bin/chromium-browser

You can install a specific version like:
flowise@1.0.0
RUN npm install -g flowise

WORKDIR /data

CMD ["flowise","start"]

Listing 1: Content of Dockerfile

Figure 1: Flowise up and running in the web browser

32 codemag.com

Figure 2: You can start building your LangChain application by adding nodes into the empty canvas of your new Flowise project.

Figure 3: Nodes are organized into groups.

You can now use the newly built flowise Docker image to
create and run a Docker container (also named flowise;
as specified using the --name option):

$ docker run -d --name flowise -p 3000:3000 flowise

The Flowise app internally listens on port 3000. The usage
of the -p option in the Docker command signifies that
the Docker container will be configured to listen on port
3000 externally (the first 3000 in 3000:3000) and forward
that traffic to port 3000 internally, aligning with the port
where Flowise is actively listening.

Launching Flowise
Now that Flowise is installed and running (either locally
using Node.js or using Docker), you can load Flowise using
a web browser. Type http://localhost:3000/ in the URL bar
and you should see Flowise, as shown in Figure 1.

Creating a Simple Language Translator
Click the Add New button to create a new Flowise project. You
should now see the canvas for your new project (see Figure 2).

Adding Nodes
To build your LLM-based applications, you add nodes to
the project. Nodes are the building blocks of your Flowise
application.

The various nodes in Flowise map
to corresponding components in
LangChain.

To add a node to the canvas, click the + button to dis-
play all the available nodes. All of the available nodes

Prototyping LangChain Applications Visually Using Flowise

33codemag.com

Figure 4: Use the OpenAI node to use a model from
OpenAI.

Figure 5: Configuring the OpenAI API Key in the OpenAI node

are organized into groups, such as Agents, Cache,
Chains, Chat Models, etc. (see Figure 3). You can expand
each of these groups to view the various nodes.

For this project, let’s start off with a straight-forward task.
Let’s build a language translator that translates whatever
the user types in into Chinese as well as Japanese.

You can apply for an OpenAI API
key at: https://platform.openai.com/
account/api-keys. Note that this is a
chargeable service.

The first node to add is the OpenAI node (located un-
der the LLMs group). Drag and drop the OpenAI node
onto the canvas (see Figure 4). You’ll make use of the
gpt-3.5-turbo-instruct LLM provided by OpenAI.

To make use of the LLM at OpenAI, you need to have an
OpenAI API key. Take note that you will be charged based
on your usage.

Under the Connect Credential section of the OpenAI
node, click the drop-down button and select Create New.
Give your credential a name and type in your OpenAI API
key (see Figure 5). Then click Add.

Next, you’re going to add the Prompt Template node
(located under the Prompts group). You’ll create the
prompt to instruct the LLM to perform the transla-
tion from English to Chinese and Japanese. Type the
following sentences into the Template textbox (see
Figure 6).

Translate the provided {sentence} from
English to Chinese as well as Japanese.
Answer:

Prototyping LangChain Applications Visually Using Flowise

Figure 6: Configure the Prompt Template node.

34 codemag.com

Figure 7: Connect all the nodes together.
Figure 8: The various buttons for configuring your
application

Prototyping LangChain Applications Visually Using Flowise

The third and final node you need to add is the LLM
Chain node (located under the Chains group). This node
takes in an LLM as well as a prompt template (as well as
some other optional nodes). Connect the three nodes that
you’ve added, as shown in Figure 7.

Testing the Project
You’re now ready to test the project. At the top right cor-
ner of the page, there are several buttons (see Figure 8).

To run the project, you first need to click the Save Proj-
ect button to save the project. When prompted, name
the project My Translator. Then, click the Chat button to
bring up the chat window. Figure 9 shows the response
returned by the OpenAI LLM after you typed Good morn-
ing! The response returned is the sentence translated
into Chinese and Japanese.

Downloading the Project
Once the project is saved, you can download a copy so
that you can:

•	 Load it back to Flowise later on.
•	 Programmatically call your Flowise project using

languages such as Python or JavaScript.

To download the Flowise project, click on the Proj-
ect Settings button and click Export Chatflow (see
Figure 10).

For this project, a JSON file named My Translator Chat-
flow.json is downloaded onto the local computer.

Using the Flowise Project Programmatically
With the project downloaded, you can now make use of
it programmatically. Flowise provides a number of ways
to call your project programmatically. Click on the button
labelled </> and you’ll see the list of options shown in
Figure 11.

You can:
•	 Embed your project in a HTML web page.
•	 Embed your project in a React web application.
•	 Call your project as a web service using Python or

JavaScript.

35codemag.com Prototyping LangChain Applications Visually Using Flowise

Figure 9: Testing the application
Figure 10: Exporting your
Flowise application

Figure 11: The various ways to use your Flowise application programmatically

36 codemag.com

Figure 12: Sharing the chatbot with other users

Figure 13: Running the chatbot as an independent web application

Prototyping LangChain Applications Visually Using Flowise

•	 Call your project as a web service using the CURL
utility on the command line.

•	 Share your project as a chatbot web application.

Let’s take a look at some examples. For accessing the
project as a web service using Python, you can use the
following code snippet:

import requests

API_URL = "http://localhost:3000/api/" +
 "v1/prediction/a46b75ab-89e5"+
 "-446d-8323-847d83094791"

def query(payload):
 response = requests.post(API_URL,
 json=payload)
 return response.json()

output = query({
 "question": "Hey, how are you?",
})
print(output)

The result returned will look like this (formatted for clar-
ity):

{
 'text':
 '\nChinese: ?
 \nJapanese: ?'
}

For accessing the project on the command line, you can
use the CURL utility:

$ curl http://localhost:3000/api/v1/
prediction/a46b75ab-89e5-446d-8323-
847d83094791 \
 -X POST \
 -d '{"question": "Hey, how are you?"}' \
 -H "Content-Type: application/json"

37codemag.com

Creating a Conversational Chatbot
The second project to create is a conversational chatbot.
Using Flowise, you can create a chatbot that functions
very much like ChatGPT. Here are the nodes that you’ll be
using for this project:

•	 ChatOpenAI: You use this node to specify the model
you want to use from OpenAI. Also, you need to
specify your OpenAI API key, so take note that you
will be charged based on your usage. For this ex-
ample, you’ll use the gpt-3.5-turbo model.

•	 Buffer Memory: The memory to remember your con-
versation.

•	 Conversation Chain: A conversation chain that
takes in a LLM and memory with the prompt tem-
plate already configured for chatting.

Figure 14 shows how the nodes are connected. Note that
for this example, the inferencing (running of the LLM) is
performed by OpenAI.

The result returned will look like this:

{"text":"\nChinese: ?
\nJapanese: ?"}

You can also share the chatbot with other users. To do
that, click on the Share Chatbot tab and copy the URL
(see Figure 12).

When you paste the copied URL into a web browser, you’ll
be prompted to enter a username and password. By de-
fault, Flowise is started without authorization protection.
You can enter anything for username and password and
you’ll be allowed accessed to the chatbot. If you want to
bypass the prompting for username and password, check
the Make Public option, as shown in Figure 12.

You can now see the chatbot. This provides a convenient
way for users to make use of your project straight away
(see Figure 13).

Prototyping LangChain Applications Visually Using Flowise

Figure 14: Connecting the nodes together
Figure 15: You can have a conversation with the
chatbot and it remembers the context of the chat.

38 codemag.com

Save the project and then click the Chat button. You can chat
with the OpenAI LLM and follow up with questions (see Fig-
ure 15). As the conversation chain is connected to the buffer
memory, you can maintain a conversation with the LLM.

Alternatively, if you want to build a chat application
without paying for the LLM (as in the case of OpenAI),
you can use the HuggingFace Inference node. Figure 16
shows how you can do that using the following nodes:

•	 HuggingFace Inference: Use this node to make use
of a LLM hosted by HuggingFace. You need to spec-
ify your HuggingFace Token key.

•	 Prompt Template: Configures the prompt template.
•	 LLM Chain: Connects to the LLM and prompt tem-

plate.

Note that for the HuggingFace Inference node, there are
two ways to use the model:

Prototyping LangChain Applications Visually Using Flowise

Figure 16: Using the HuggingFace Inference node for chatting

Figure 17: The error displayed when the model is too
large for your machine

Figure 18: Chatting with the model from HuggingFace

DEV
Intersection

40 codemag.com

•	 If you specify the model name, tiiuae/falcon-7b-in-
struct in this example, the model will be downloaded to
your computer and run locally. If you try to use a model
that’s too large, such as mistralai/Mixtral-8x7B-v0.1,
you may get an error, as shown in Figure 17.

•	 To use a larger LLM (such as mistralai/Mixtral-
8x7B-v0.1), you need to use HuggingFace Infer-

Prototyping LangChain Applications Visually Using Flowise

Figure 20: Connecting the Character Text Splitter node to the Pdf File node

Figure 21: The sample invoice PDF file
Figure 22: Configuring the HuggingFace Inference
Embeddings node

Vector embedding, also known
as word embedding or vector
representation, is a technique
used in natural language processing
(NLP) and machine learning
to represent words or phrases
as numerical vectors.
The idea behind vector embedding
is to capture the semantic
relationships and contextual
information of words in a
continuous vector space.

ence Endpoints (https://huggingface.co/inference-
endpoints), which runs the model on the cloud (by
HuggingFace).

Figure 18 shows the chatbot using the tiiuae/falcon-7b-
instruct model.

Querying Local Documents
Chatting with an LLM is fun, but in the real world, business-
es are more interested in whether they are able to make use
of AI to query their own data. Well, using a technique known
as vector embedding, you’re now able to do just that.

41codemag.com

In this section, you’ll build an application that allows
you to query your own PDF document. You’ll need the
following nodes:

•	 Character Text Splitter: Use this node to split a
long document into smaller chunks that can fit into
your model's context window.

•	 PDF File: Loads a PDF document for processing.
•	 HuggingFace Interface Embeddings: Use this

node to perform embedding. Embedding refers to
the representation of words or sentences as vectors
in a high-dimensional space. It’s a way to repre-
sent words and sentences in a numerical manner.
Note that in this example, you can also make use of
the OpenAI Embeddings node, but this will incur
charges. In contrast, the HuggingFace Interface
Embeddings node uses the embedding model from
Hugging Face, which is free.

•	 In-Memory Vector Store: Use this node to store
embeddings in-memory and it performs an exact,
linear search for the most similar embeddings.

•	 OpenAI: Use this node to make use of an LLM from
OpenAI to perform querying of your local data.

•	 Conversational Retrieval QA Chain: Use this node
to create a retrieval-based question answering chain
that is designed to handle conversational context.

Prototyping LangChain Applications Visually Using Flowise

Figure 23: Connecting all the nodes together

Figure 24: Adding the OpenAI and Conversational Retrieval QA Chain node

42 codemag.com

Figure 25: The complete project

Prototyping LangChain Applications Visually Using Flowise

Figure 26: Clicking the
Upsert button

Figure 27: The steps performed by the Upsert button

43codemag.com

You can obtain a Hugging
Face API Token from https://
huggingface.co/settings/tokens.

You’ll learn how to add each of the above nodes and con-
nect them in the following steps.

First, add the Character Text Splitter node and configure
it as shown in Figure 19.

Then, add the Pdf File node to the canvas as shown in
Figure 20. To upload a local PDF document for querying,
click the Upload File button and select the PDF document
that you want to use. Then, connect the Character Text
Splitter node to the Pdf File node.

Figure 21 shows the content of the PDF document that
contains the online purchase of an item.

Next, add the HuggingFace Interface Embeddings node
to the canvas and enter your Hugging Face API token (see
Figure 22).

The next node to add is In-Memory Vector Store. Add
this node to the canvas and connect it to the Pdf File and
HuggingFace Inference Embeddings nodes as shown in
Figure 23.

Next, drag and drop the OpenAI node and set your Ope-
nAI API key. Finally, add the Conversational Retrieval
QA Chain node and connect it to the other nodes as
shown in Figure 24.

Prototyping LangChain Applications Visually Using Flowise

Figure 28: You can now ask questions pertaining to your PDF document.

Figure 29: Using the ChatOpenAI and CSV Agent nodes

melan
Comment on Text
Can you make this look like a link?

44 codemag.comPrototyping LangChain Applications Visually Using Flowise

Figure 30: Asking questions based on the content of the CSV file

The complete project is shown in Figure 25.

The term upsert refers to an
operation that inserts rows into
a database table if they don’t already
exist, or updates them if they do.

Before you can run the project, you need to click the
Upsert button, as shown in Figure 26.

You’ll see the popup, as shown in Figure 27.

Clicking the Upsert button performs a few operations:
text splitting on the PDF document, creating embeddings
using the HuggingFace Inference Embeddings, and then
storing the vectors in-memory.

Once the upsert is done, you can now click on the Chat
button to start the chatbot (see Figure 28).

Using Agents for Analyzing Data
LLMs are designed primarily for generating responses re-
lated to natural language understanding. Nevertheless,
they exhibit notable limitations when faced with ana-
lytical inquiries. For example, when presented with a CSV
file and asked for a summary of its contents, LLMs often
demonstrate limited capabilities in providing a satisfac-

tory answer. To use LLMs for analytical tasks, a common
approach involves employing the LLM to generate the
necessary code for the query and subsequently executing
the code independently.

In short, an agent helps you
accomplish your tasks without you
needing to worry about the details.

In LangChain, there is a feature known as agents. An
agent is a system that decides what action is to be taken
by the LLM, and it tries to solve the problem until it
reaches the correct answer. Agents are designed to per-
form well-defined tasks, such as answering questions,
generating text, translating languages, summarizing text,
etc.

For this section, I want to show how you can make use of
the CSV Agent in LangChain (and in Flowise) to perform
analytical tasks on a CSV file. The CSV Agent node oper-
ates by reading a CSV file in the background. It employs
the Pandas DataFrame library and uses the Python lan-
guage to execute Python query code generated by an LLM.

For the CSV file, I’ll be using the Titanic training dataset
(Source of Data: https://www.kaggle.com/datasets/tedllh/
titanic-train. Licensing — Database Contents License (DbCL)
v1.0 https://opendatacommons.org/licenses/dbcl/1-0/).

45codemag.com Prototyping LangChain Applications Visually Using Flowise

Figure 31: Go to the Marketplace for templates of popular applications you can build.

� Wei-Meng Lee
�

Let’s create a new Flowise project and add the following
components to the canvas:

•	 ChatOpenAI: Remember to enter your OpenAI API
key.

•	 CSV Agent: Click on the Upload File button to se-
lect the Titanic CSV file Titanic_train.csv.

Figure 29 shows how the nodes are connected.

Save the project and then click the Chat button to display
the chatbot (see Figure 30). You can now ask analytical
questions pertaining to the CSV file, such as:

•	 How many male passengers were there?
•	 How many passengers below the age of five died?
•	 How many passengers were more than 50 years old?

Summary
I hope this article provides motivation for you to get
started with LangChain programming. Although Lang-

Chain programming can be intimidating, Flowise takes
away the fear and provides a low-code/no-code experi-
ence for you to get started with AI programming. One
more thing: If you want to learn more about the capa-
bilities of Flowise, the fastest way is to learn from the
templates provided. Figure 31 shows the Marketplaces
in Flowise where you can get the templates for popular
applications that you can build with Flowise. Good luck
and have fun!

46 codemag.comSemantic Kernel 101: Part 2

ONLINE QUICK ID 2403061

Semantic Kernel 101: Part 2
In the previous installment (https://codemag.com/Article/2401091/Semantic-Kernel-101), I Introduced Semantic Kernel (SK),
Microsoft’s framework for working with LLMs, which was in preview at the time. I didn’t include any code in that article because
Semantic Kernel was still changing fast and almost every line of code would likely have been out of date before you read it.

So I promised a follow-up article that explored the code.
Since then, SK went into beta and then Release Candi-
date, and, as I write this, V1 has just released and I ex-
pect that namespaces, type names, and arguments are
now in their final form, or very close to it.

To follow along with the code in the article, you’ll need
access to an LLM. I’m using Azure OpenAI. As an alterna-
tive, you can connect to an OpenAI account.

Note: Although I don’t have code for using OpenAI in this
article, if you have an OpenAI development account, you
can just replace the calls to AddAzureOpenAIChatComple-
tion with AddOpenAIChatCompletion and pass in your
clientId instead of endpoint and apiKey.

From the Azure portal, choose Create a resource and
search for OpenAI, and then click Create. As of this writ-
ing, the GPT-4 model is only available in three regions:
Sweden Central, Canada East, and Switzerland North.
For our purposes, select one of the above regions. Next,
choose Keys and Endpoint from the menu on the left and
copy Key 1 and the endpoint, as you’ll need those soon.

Back on the Overview page for the Azure OpenAI re-
source, you’ll be directed to the Azure OpenAI Studio web
page. There’s also now a preview version of the page, so
it may change soon, but I’ll stick with the current page
for this article. On that Azure OpenAI Studio page, from
the menu on the left-hand side, choose Deployments and
create a new deployment. You can think of a deployment
as an instance of a model. You can create as many de-
ployments as your account is authorized for. Currently,
that’s about six deployments per resource. The most ca-
pable model available as I’m writing this is GPT-4 or GPT-
4-32k. When it becomes available, GPT-4 Turbo should
be both more powerful and less expensive. Most of the
work you’re going to do today can be done with GPT-
35-turbo, except for the work you’ll do with the Handle-
bars Planner. Planners work much better with GPT-4 or
above. For the purposes of this article, choose the GPT-4
model.

Accept the default of using the latest version of the mod-
el and give it a name. To keep things simple, just name
the deployment gpt-4 to match the model’s name. You
can choose Chat from the left-hand menu and try out your
model. Type, “Tell me a joke” in the chat session window
and submit.

Now that the LLM is ready, let’s write some code. In Visual
Studio or VS Code, create a new .NET 8 console applica-
tion. Add the following NuGet packages:

•	 Microsoft.Extensions.Logging.Console
•	 Microsoft.SemanticKernel
•	 System.Configuration.ConfigurationManager

Modify your Program.cs file to look like this:

internal class Program
{
 private static string _endpoint;
 private static string _apiKey;

 static async Task Main(string[] args)
 {
 _endpoint = ConfigurationManager

.AppSettings["endpoint"];
 _apiKey = ConfigurationManager
 .AppSettings["apiKey"];

 Console.Clear();

 await InlineFunctions();
 }
}

You’ll need to add an App.config file to your project if
there isn’t one already and enter the endpoint and API
key that you copied earlier. You can find in the Azure
portal on your newly created Azure OpenAI resource under
the Keys and Endpoint menu item.

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <appSettings>
 <add key="endpoint" value="<your endpoint>"/>
 <add key="apikey" value="<your key>"/>
 </appSettings>
</configuration>

Next, add the body of the InlineFunctions() method, just
below Main(), as shown in Listing 1.

The code starts by creating a builder, much like the way
you use builders to create web application hosts in ASP.
NET Core. In this case, you’re configuring the builder by
adding console logging so you can see what the Seman-
tic Kernel is doing as it works. This is why you included
the Microsoft.Extensions.Logging.Console NuGet package.
Like ASP.NET, you can use any logger available from Mi-
crosoft or create your own. I find the console logger great
for development.

You then add an Azure OpenAI chat completion service
and pass it the endpoint and API key you read from the
config file, as well as the name of the deployment you
created in Azure OpenAI Studio.

Next, create an instance of the kernel by calling the
Build() method on the builder. The next few lines cre-
ate a prompt and some settings for the prompt on the
fly. This is called an inline semantic function and it’s the
equivalent of “hello world” in SK. Finally, call kernel.In-

Mike Yeager
myeager@eps-software.com

Mike is the CEO of EPS’s
Houston office and a skilled
.NET developer. Mike excels
at evaluating business
requirements and turning
them into results from
development teams.
He’s been the Project Lead
on many projects at EPS
and promotes the use of
modern best practices, such
as the Agile development
paradigm, use of design
patterns, and test-drive
and test-first development.
Before coming to EPS,
Mike was a business owner
developing a high-profile
software business in the
leisure industry. He grew
the business from two em-
ployees to over 30 before
selling the company and
looking for new challenges.
Implementation experience
includes .NET, SQL Server,
Windows Azure, Microsoft
Surface, and Visual FoxPro.

47codemag.com Semantic Kernel 101: Part 2

code that accompanies this article or create them by
hand. To create them by hand, first, create a folder in the
console project named Plugins. Under the Plugins folder,
create a folder named Fun and under the Fun folder, cre-
ate three folders named Excuses, Joke, and Limerick. In
the Excuses folder, create a file named skprompt.txt and
enter the text from the following code:

Generate a creative reason or excuse for the
given event.
Be creative and be funny. Let your imagination
run wild.

Event:I am running late.
Excuse:I was being held ransom by giraffe
gangsters.

Event:{{$input}}

Also in the Excuses folder, create a second file named
config.json and enter this text.

vokeAsync(), passing the newly created function and the
parameters you want it to use. In this case, the parameter
is named “input” in the prompt, so assign the text to
that parameter. Then write the response to the console
window, as shown in Figure 1.

You can try changing the input text, or even getting input
from the user, using Console.ReadLine().

Next, let’s do something a little more realistic and read in
the prompts and settings you’re going to call from files
on disk instead of hard coding them in the application.
Back in the Main method, comment out the await In-
lineFunctions(); line and add a new line await Basic-
Functions();. Then add the code from Listing 2 below
the InlineFunctions method. Notice that I’ve commented
out the AddLogging() call to minimize the output on
screen.

Next, add the files containing the prompts and settings
you’re going to use. You can copy the files from the source

Figure 1: Response to the inline function, including logging output.

private static async Task InlineFunctions()
{
 var builder = Kernel.CreateBuilder();

 builder.Services
 .AddLogging(configure => configure.AddConsole())
 .AddAzureOpenAIChatCompletion(
 "gpt-4", //deployment (not model) name
 _endpoint,
 _apiKey);

 var kernel = builder.Build();

 var prompt = """
 {{$input}}

 Rewrite the above in the style of Shakespeare.
 Be brief.
 """;

 var settings = new PromptExecutionSettings
 {
 ExtensionData = new Dictionary<string, object>
 {
 { "temperature", 0.9 }
 }
 };

 var shakespeareFunction = kernel
 .CreateFunctionFromPrompt(prompt, settings);

 var result = await kernel.InvokeAsync(
 shakespeareFunction,
 new KernelArguments
 {
 ["input"] = "I'm fascinated by AI technologies."
 });

 Console.WriteLine(result);
}

Listing 1: Execute an online semantic function.

48 codemag.com

{
 "schema": 1,
 "description": "Turn a scenario into a creative
 or humorous excuse to send your boss",
 "type": "completion",
 "completion": {
 "max_tokens": 60,
 "temperature": 0.5,
 "top_p": 0.0,
 "presence_penalty": 0.0,
 "frequency_penalty": 0.0
 }
}

In the Joke folder, add an skprompt.txt file with the con-
tents of this next snippet:

WRITE EXACTLY ONE JOKE or HUMOROUS STORY
ABOUT THE TOPIC BELOW

JOKE MUST BE:
- G RATED
- WORKPLACE/FAMILY SAFE
NO SEXISM, RACISM OR OTHER BIAS/BIGOTRY

BE CREATIVE AND FUNNY. I WANT TO LAUGH.
Incorporate the style suggestion,
if provided: {{$style}}
+++++

{{$input}}
+++++

If you ask Semantic Kernel to
write something funny, don’t expect
a dad joke or a stand-up act.
It’s early days and its sense of
humor is a bit undeveloped.

Now add a config.json file with this:

{
 "schema": 1,
 "description": "Generate a funny joke",
 "type": "completion",
 "completion": {
 "max_tokens": 1000,
 "temperature": 0.9,
 "top_p": 0.0,
 "presence_penalty": 0.0,
 "frequency_penalty": 0.0
 },
 "input": {
 "parameters": [
 {
 "name": "input",
 "description": "Joke subject",
 "defaultValue": ""
 },
 {

There was a young woman named Bright,
Whose speed was much faster than light.
She set out one day,
In a relative way,
And returned on the previous night.

There was an odd fellow named Gus,
When traveling he made such a fuss.
He was banned from the train,
Not allowed on a plane,
And now travels only by bus.

There once was a man from Tibet,
Who couldn't find a cigarette
So he smoked all his socks,
and got chicken-pox,
and had to go to the vet.

There once was a boy named Dan,
who wanted to fry in a pan.
He tried and he tried,
and eventually died,
that weird little boy named Dan.

Now write a very funny limerick about {{$name}}.
{{$input}}
Invent new facts about their life. Must be funny.

Listing 3: Contents of skprompt.txt. A predefined prompt on disk.

private static async Task BasicFunctions()
{
 var builder = Kernel.CreateBuilder();

 builder.Services
 //.Services.AddLogging(configure =>
 //configure.AddConsole())
 .AddAzureOpenAIChatCompletion(
 "gpt-4",
 _endpoint,
 _apiKey);

 var kernel = builder.Build();

 var functionDir =
 Path.Combine(Directory.GetCurrentDirectory(),
 "Plugins", "Fun");
 var semanticFunctions =
 kernel.ImportPluginFromPromptDirectory(functionDir);

 Console.WriteLine("HERE IS A LAME EXCUSE...");
 var excuseResult = await kernel
 .InvokeAsync(semanticFunctions["Excuses"],
 new KernelArguments { ["input"] = "my cat" });
 Console.WriteLine(excuseResult);
 Console.WriteLine();

 Console.WriteLine("HERE IS A LAME JOKE...");
 var jokeResult = await kernel
 .InvokeAsync(semanticFunctions["Joke"],
 new KernelArguments { ["input"] = "swimming" });
 Console.WriteLine(jokeResult);
 Console.WriteLine();

 Console.WriteLine("HERE IS A LAME LIMERICK...");
 var arguments = new KernelArguments
 {
 ["name"] = "Mike",
 ["input"] = "airplanes"
 };
 var limerickResult = await kernel
 .InvokeAsync(semanticFunctions["Limerick"], arguments);
 Console.WriteLine(limerickResult);
}

Listing 2: Load prompts from disk and execute as semantic functions.

Semantic Kernel 101: Part 2

49codemag.com

of .NET at your disposal. Semantic Kernel treats sematic
code and native code equally and the two can be inter-
mixed. Notice that you add the KernelFunction attribute
to each method you want to expose to Semantic Kernel.
I’ve also added a Description attribute that not only helps
document the code, but you’ll also use it in the next ar-
ticle when I discuss planners.

Semantic Kernel treats semantic code and native code
equally and the two can be intermixed.

Back in Main(), comment out await BasicFunctions(); and
enter a new line await NativeFunctions();. Below the Ba-
sicFunctions method, add the code from the next snippet.

 "name": "style",
 "description": "Give a hint about the
 desired joke style",
 "defaultValue": ""
 }
]
 }
}

In the Limerick folder, add an skprompt.txt file with the
contents of Listing 3 and a config.json file with the con-
tents of Listing 4.

Right-click on each new file, choose Properties from the
context menu, and set the Copy to Output Directory prop-
erty of each file to Copy if newer. Note that you’ll also
have to do this step if you copied the files and folders
from the accompanying source code. When you run the
code, you should see output like that in Figure 2.

Looking at the code, you’ll see that the first part is the
same as before. The difference comes where you create the
plug-ins (also known as functions). Instead of creating
them in code, you call the ImportPluginFromPromptDirec-
tory() method on the kernel and give it the path to the
files you just created. Notice that each folder within the
Fun directory contains two files: one for the prompt and
one for the settings associated with the prompt. By using
this type of folder structure, you can load all three plug-
ins within the Fun folder at once. After loading, you’re
returned a dictionary containing all the plug-ins that
were loaded and you can reference each plug-in from the
dictionary when you make the Invoke.Async() calls. Also
notice that the Limerick plug-in accepts two parameters,
unlike the previous plug-ins, which accepted only one.

Now that you’ve done the basics and are proficient with
generating text with SK, let’s explore how to connect se-
mantic code (prompts and prompt engineering) with native
code (in this case, C#). Back in the Main method, comment
out the await BasicFunctions(); line and add the new line
await NativeFunctions();. Next, create a new file in the
project named MyCSharpFunctions.cs and enter this code:

public class MyCSharpFunctions
{
 [KernelFunction]
 [Description("Return the first row of a
qwerty keyboard")]
 public string Qwerty(string input)
 {
 return "qwertyuiop";
 }

 [KernelFunction]
 [Description("Return a string that's duplicated")]
 public string DupDup(string input)
 {
 return input + input;
 }
}

These are extremely simple examples. The first returns the
letters on the top row of the keyboard and the second
duplicates whatever text is passed in, but you can pro-
gram anything you can imagine. You have the full power

Figure 2: Excuse, joke, and limerick responses generated from pre-defined prompts.

{
 "schema": 1,
 "description": "Generate a funny limerick about a person",
 "type": "completion",
 "completion": {
 "max_tokens": 200,
 "temperature": 0.7,
 "top_p": 0,
 "presence_penalty": 0,
 "frequency_penalty": 0
 },
 "input": {
 "parameters": [
 {
 "name": "name",
 "description": "",
 "defaultValue": "Bob"
 },
 {
 "name": "input",
 "description": "",
 "defaultValue": "Dogs"
 }
]
 }
}

Listing 4: Contents of config.json. Pre-defined prompt settings.

Semantic Kernel 101: Part 2

50 codemag.com

Useful Links

microsoft/semantic-kernel:
Integrate cutting-edge LLM
technology quickly and easily
into your apps (github.com)

Orchestrate your AI with
Semantic Kernel | Microsoft
Learn

function as the input of the next. Parameter handling has
gotten much more sophisticated since those early days,
but you’ll still see this pattern, so I kept it here.

Speaking of chaining multiple calls together (something
SK calls pipelines, though not as automatic as they once
were when inputs and outputs were simpler), it’s often
useful to run multiple semantic and/or native functions
in succession. In this example, you ask the LLM to cre-
ate a short poem and then ask it to tell you more about
the poem it just created. Back in Main(), comment out
await NativeFunctions(); and add a new line await
Pipelines();, and then add the code in this next snippet
to the NativeFunctions method.

Training AI on all the topics in
the world is a pretty tall order and
it’s nowhere near finished being
trained. In the limerick example,
the rules of this type of poetry are
not strictly followed (the rhythms
don’t quite work).

private static async Task Pipelines()
{
 var builder = Kernel.CreateBuilder();

 builder.Services
 //.Services.AddLogging(configure =>
 //configure.AddConsole())
 .AddAzureOpenAIChatCompletion(
 "gpt-4",
 _endpoint,
 _apiKey);

 var kernel = builder.Build();

 var functionDir =
 Path.Combine(Directory.GetCurrentDirectory(),
 "Plugins", "Writer");
 var semanticFunctions = kernel
 .ImportPluginFromPromptDirectory(functionDir);

 var functionPipeline = new KernelFunction[]
 {
 semanticFunctions["ShortPoem"],
 semanticFunctions["TellMeMore"]
 };

 var currentArg = "the sky";
 foreach (var function in functionPipeline)
 {
 var result = await kernel.InvokeAsync(function,
 new KernelArguments { ["input"] = currentArg });
 currentArg = result.ToString();
 Console.WriteLine(currentArg);
 Console.WriteLine();
 }
}

Again, the code to create the kernel is the same as before
and the difference comes when loading the native func-
tions. You call the generic method ImportPluginFromType()
with the type containing the functions. Then you call In-
vokeAsync(), exactly as you do for semantic functions.

private static async Task NativeFunctions()
{
 var builder = Kernel.CreateBuilder();

 builder.Services
 //.AddLogging(configure =>
 //configure.AddConsole())
 .AddAzureOpenAIChatCompletion(
 "gpt-4",
 _endpoint,
 _apiKey);

 var kernel = builder.Build();

 var nativeFunctions = kernel
 .ImportPluginFromType<MyCSharpFunctions>();

 var result = await kernel.InvokeAsync(
 nativeFunctions["Qwerty"],
 new KernelArguments { ["input"] = "hello" });
 Console.WriteLine(result);
 Console.WriteLine();

 result = await kernel.InvokeAsync(
 nativeFunctions["DupDup"],
 new KernelArguments { ["input"] = "hello" });
 Console.WriteLine(result);
 Console.WriteLine();
}

You may have noticed that the Qwerty function accepts
an input parameter but doesn’t use it. At one time, it was
the standard in SK to accept a single-string named input
and return a string as the output. That made it easier to
chain multiple calls together and pass the output of one

Figure 3: A generated poem, followed by a description of the poem

Semantic Kernel 101: Part 2

51codemag.com

text document",
 "completion": {
 "max_tokens": 500,
 "temperature": 0.0,
 "top_p": 0.0,
 "presence_penalty": 0.0,
 "frequency_penalty": 0.0
 }
}

As before, make sure to right-click on each file and set
the Copy to Output Directory property to Copy if newer.
You should get output like that in Figure 3.

Conclusion
In this article, you did some hands-on AI programming
with Semantic Kernel. In the Azure portal, you created
a deployment of a GPT-4 Large Language Model. Then
you created a simple prompt in code and executed it
against the model. You then experimented with load-
ing pre-engineered prompts and associated settings
from disk. Next, you executed your own C# code in the
same way you executed the prompts, showing how the
two types of code, semantic and native, could be easily
intermingled. You ended with an example of chaining
functions together, using the output of one as the input
of the next.

In the next article, I’ll work with more advanced top-
ics, including using the Retrieval Augmented Generation
(RAG) pattern where you store some documents in a se-
mantic database and then search them, not by keyword,
but by meaning. You’ll see how the RAG pattern allows
you to “ground” the responses from the LLM and cus-
tomize the information it uses to respond. I’ll also show
related utilities, like “chunkers,” to cut large documents
down to size so you can put them into the semantic data-
base. Finally, I’ll look at planners, where I ask the LLM to
break down a large, complex problem into smaller steps
and choose from both semantic and native code to auto-
matically create and execute a pipeline of functions to
complete those steps.

Although this pipeline only calls two functions, it can
be extended to much more complex scenarios. Again,
building the kernel is the same, and then you load the
functions from disk as you did in the BasicFunctions ex-
ample. In this case, you’re using two new prompts that
you haven’t used before. Under the Plugins folder, add a
new folder named Writer and under that, add two new
folders named ShortPoem and TellMeMore. In the Short-
Poem folder, add a new file named skprompt.txt and use
the text from this snippet.

Generate a short funny poem or limerick to
explain the given event. Be creative and
be funny. Let your imagination run wild.
Event:{{$input}}

Then add a new file named config.json and use the text
from this snippet.

{
 "schema": 1,
 "type": "completion",
 "description": "Turn a scenario into a
 short and entertaining poem.",
 "completion": {
 "max_tokens": 60,
 "temperature": 0.5,
 "top_p": 0.0,
 "presence_penalty": 0.0,
 "frequency_penalty": 0.0
 },
 "input": {
 "parameters": [
 {
 "name": "input",
 "description": "The scenario to turn
into a poem.",
 "defaultValue": ""
 }
]
 }
}

In the TellMeMore folder, add a new file named skprompt.
txt and use the text from this snippet.

>>>>>The following is part of a
{{$conversationtype}}.
{{$input}}

>>>>>The following is an overview of a
previous part of the {{$conversationtype}},
focusing on "{{$focusarea}}".
{{$previousresults}}

>>>>>In 250 words or less, write a verbose
and detailed overview of the
{{$conversationtype}} focusing solely on
"{{$focusarea}}".

Then add a new file named config.json and use the this text:

{
 "schema": 1,
 "type": "completion",
 "description": "Summarize given text or any

� Mike Yeager
�

SPONSORED SIDEBAR

Adding Copilots
to Your Apps

The future is here now,
and you don’t want to
get left behind. Unlock
the true potential of your
software applications by
adding Copilots. CODE
Consulting can assess your
applications and provide
you with a roadmap for
adding Copilot features
and, optionally, assist
you in adding them to
your applications. Reach
out to us today to get
your application
assessment scheduled:
www.codemag.com/ai

Semantic Kernel 101: Part 2

52 codemag.com

ONLINE QUICK ID 2403071

Aspirational .NET: What Is .NET Aspire?

Aspirational .NET:
What Is .NET Aspire?
.NET Core has been a great ride for all of us building web- and cloud-driven apps, but managing distributed apps made for cloud
native has been a mishmash of different tools. That’s about to change. Seeing a problem in how large microservice architectures
are deployed and managed, the ASP.NET team has taken a big swing with a solution that should help most .NET developers

Effectively, this means your distributed application is
loosely coupled, can support scaling as necessary, and is
using instrumentation to be able to monitor your applica-
tions in real-time. In addition, as seen in Figure 1, cloud
native leans on four principles:

Cloud native is an approach to
running scalable applications in a
variety of environments, including
public, private, and hybrid clouds.

With these principles in mind, the goal of cloud native
is an application that’s composed. For large distributed
applications, your project will need a variety of differ-
ent types of services, not just the ones your organization
authors. For example, some of the common services or
resources that you need can be seen in Figure 2.

In order to accomplish this, you need a way to define and
share information across the different services. There are
a number of approaches that work (e.g., Kubernetes). For
many .NET developers, it’s been a challenge to learn how
to integrate your services into a cohesive application.
That’s where .NET Aspire comes in.

What Is .NET Aspire?
For several years now, Microsoft has been working on a
sidecar system for microservices called Dapr. The goals of

Shawn Wildermuth
shawn@wildermuth.com
wildermuth.com
@shawnwildermuth

Shawn Wildermuth has
been tinkering with
computers and software
since he got a Vic-20
back in the early ’80s.
As a Microsoft MVP since
2003, he’s also involved
with Microsoft as an ASP.
NET Insider and ClientDev
Insider. He’s the author
of over twenty Pluralsight
courses, written eight
books, an international
conference speaker, and
one of the Wilder Minds.
You can reach him at his
blog at http://wildermuth.
com. He’s also making his
first, feature-length docu-
mentary about software
developers today called
“Hello World: The Film.”
You can see more about it at
http://helloworldfilm.com.

Figure 1: Principles of
cloud native

think about microservices and distributed applications
without the dread many of us have had.

The Problem
Building distributed apps can be difficult. This has been
a truth in computer science since the very beginning.
Today, we talk about using containers, Kubernetes, and
creating microservices. But the nature of distributed
computing is still very much the same as it was in the
beginning. Creating applications that are distributed im-
mediately require some basic requirements, including how
the different services can reach each other, how to man-
age configuration across service boundaries, and how to
monitor projects across the service boundaries. The com-
munity is trying to solve this with something called cloud
native.

Aspire and other Cloud Native frameworks solve distrib-
uted applications, but for many organizations, there’s not
enough benefit to justify the complexity in moving to
cloud-native.

Cloud Native? What’s That?
The idea of cloud native comes from the basic desire to
decouple services. Cloud native is an approach to run
scalable applications in a variety of environments includ-
ing public, private, and hybrid clouds. To achieve this, the
architectural approach encourages:

•	 Resiliency
•	 Manageability
•	 Observability

53codemag.com Aspirational .NET: What Is .NET Aspire?

erplate and sample code it includes. The Starter Application
is a great way to see a multi-component project work, but I
think most people will start with the simple Application as a
start to a distributed application. I don’t think that either of
these will be the most common approach.

Instead of that, most people will just add .NET Aspire
to existing projects that they want to use orchestration
with. Visual Studio has this option by just right-clicking
your project, as seen in Figure 4.

Dapr were to enable the same sort of cloud native sup-
port that Aspire enables. That project was donated to
the Cloud Native Computing Foundation (CNCF) and is a
successful open-source project. In the wake of Dapr, the
Aspire framework was created by the ASP.NET Core team
to solve some of these same problems.

It seems the goal of Aspire is to simplify the set-up of
multiple smaller projects (microservices or not) with re-
lated components that you might be using (e.g., data
stores, containers, queues, message buses, etc.). This
seems especially true for working with related Azure re-
sources (e.g., Key Vault, Blob Storage, Service Bus, etc.).
This means that you can compose applications to include
projects that you build with common resources for your
applications (on premises or in the cloud). Primarily, it’s
focused on several of the pain points including:

•	 Orchestration
•	 Composing distributed apps
•	 Service discovery
•	 Configuration
•	 Tooling

Before I dig into the details of how this works, let’s start
by looking at how you can create Aspire apps.

Tooling
In this early version of Microsoft Aspire, most of the tool-
ing is in Visual Studio (although the dotnet CLI supports
this too). Like many other projects, there’s a new file
template, as seen in Figure 3:

Out of the box, Visual Studio supports a simple “Application”
and a “Starter Application.” The difference is how much boil-

Figure 2: Composing a
distributed application
for a cloud native app

Figure 3: New .NET Aspire project templates

melan
Comment on Text
Change from a colon (:) to a period (.)

54 codemag.com

Which Version?

For this article, I’m using
Preview 1 of Visual Studio
2022 and Preview 2 of
Microsoft Aspire.

used services, such as Instrumentation, Metrics, Health-
Checks, and others. It’s simply a project you can reference
to set up these different facilities for your projects, for
example, when you call the service defaults in your proj-
ects (e.g., API or Blazor projects):

// Aspire Wiring
builder.AddServiceDefaults();
builder.AddRedisOutputCache("theCache");
builder.AddSqlServerDbContext<BookContext>("theDb");

In both cases, you get two projects that are centered
around .NET Aspire, as shown in Figure 5.

The AppHost project is both a dashboard of your run-
ning distributed app as well as where the orchestration
is configured.

On the other hand, the ServiceDefaults project is a li-
brary project that creates some defaults that can be used
by one or more of your services to configure commonly

Figure 4: Adding .NET Aspire to an existing project

Aspirational .NET: What Is .NET Aspire?

55codemag.com

all your apps can use. A lot of these are used by the
dashboard inside the AppHost. Let’s take a look at the
dashboard next.

The Application Dashboard
When you run a .NET Aspire application, it launches a
dashboard that you can use to monitor the applications
in your project. For example, Figure 6 shows the initial
dashboard.

From this view, you can launch the endpoints, and view
the environments and logs to see how each service is
being launched. In addition, you can use the Monitoring
options on the left to view traces and metrics (that were
defined in the Service Defaults) to see how the applica-
tion is doing in real time, as seen in Figure 7.Figure 5: .NET Aspire projects

Figure 7: Tracing the distributed application

Figure 6: The dashboard

Behind this small little AddServiceDefaults method is
a lot of code. I encourage you to look at the code it
generates, as it configures a lot of useful services that

Aspirational .NET: What Is .NET Aspire?

56 codemag.com

entity. When you think about a microservice implementa-
tion, one of the difficult things is to handle connecting
the different services. To do this, Microsoft Aspire creates
something called an AppHost. This app host is respon-
sible for orchestrating your application. As you can see in
Figure 9, the AppHost represents a context around which
the services are housed.

Do not confuse the context of the AppHost as a container
or wrapper that holds all of the components together, but
instead as a conductor of an orchestra. It’s responsible

You can even see performance metrics in Figure 8.

Now you’ve seen how the tooling and the dashboard work,
but I think it’s important to understand how .NET Aspire
can manage each part of your distributed applications.
Let’s see that next.

Orchestration
The job of orchestration is to think of your application as
a single slate of services. This means being able to deploy
an entire set of services and dependencies as a single

Figure 8: Metrics of your distributed application

Figure 9: The AppHost’s relationship to the other services

Aspirational .NET: What Is .NET Aspire?

57codemag.com

Source Code

The source code can be
downloaded at https://github.
com/shawnwildermuth/
aspiringDotNet

Note that the cache uses the name that was defined when
you added Redis. In this way, the connection to the Redis
isn’t needed in the API project. This is what is meant
by Service Discovery. It works identically for Blazor apps,
too. This means that you have to deal with shared con-
figuration less often. For project types that don’t have
native support for Aspire, you can still coordinate them
through environment variables:

builder.AddNpmApp("frontEnd",
 "../addressbookapp",
 "dev")
 .WithReference(api);

The call With.Reference shares the api service’s URL to
the app using environment variables. For example, this
Vue app can use the environment variable (assuming
you’re going to run this as a server-side node project):

// https://vitejs.dev/config/
export default defineConfig({
 ...
 define: {
 "process.env.APP_URL":
 JSON.stringify(
 process.env["services__theApi__1"]
)
 },
 ...
})

Where Are We?
To be sure, these are early days in the lifecycle of .NET
Aspire. I’m impressed. Instead of always needing to drop
down into multiple containers and maybe even Kuber-
netes, .NET now has an orchestration engine for its own
distributed applications. I’m sincerely curious to see what
this looks like when it ships.

for starting, configuring, and connecting the difference
services together.

How Orchestration Works
If you’ve used ASP.NET Core, you’d usually create an ap-
plication by using WebApplication.CreateBuilder(). For
Aspire, you can do this in a similar fashion:

// AppHost
var builder =
 DistributedApplication.CreateBuilder(args);

Instead of wiring up services and a pipeline, you add the
parts of your application that you need. For example:

builder.AddRedisContainer("theCache");

builder.AddProject<AddressBook_Api>("theapi");
builder.AddProject<AddressBook_Blazor>("frontend");

builder
 .Build()
 .Run();

This is an additional project that’s run to orchestrate the
entire application. In this example, you’re orchestrating
the three components (or services) together. The types
of components that Aspire supports is quite varied. This
doesn’t mean that you are limited to just those compo-
nents, either. In the preview, there are a lot of supported
components. Many of these include simplified hosting or
Azure hosting, but Microsoft is working with teams across
cloud providers (i.e., Google and AWS) to add components
for those services too.

As of the preview, you can already use some of the most
common components. A sampling of these can be seen
in Table 1.

Because .NET Aspire can also be used to deploy to Azure,
there are components specific to Azure resources. Some of
these common Azure components can be seen in Table 2.

Now you know how to compose the distributed app by
using separate components, but how do you handle con-
necting the apps?

Service Discovery
In the earlier example, you can just add a Redis container
in setting up the builder. What does that mean? When
this application is run, it deploys a standard Redis docker
container and can connect it to your project. For example,
when you add the API project, you could send it a refer-
ence to the Redis container:

// AppHost
builder.AddRedisContainer("theCache");

builder.AddProject<AddressBook_Api>("theApi")
 .WithReference(cache)

This allows the other applications to use the cache using
similar calls in the project setup:

// API Project
builder.AddRedisOutputCache("theCache");

Component Type Method to Add the Service
Docker container AddDocker()
MongoDb server AddMongoDb()
MySql server AddMySql()
Postgres server AddPostgres()
SQL server AddSqlServer()
Redis AddRedisContainer()
C# project AddProject()
RabbitMQ AddRabbitMQ()

Table 1: Common components

Table 2: Azure components

Component Type Method to Add the Service NuGet Package
Blob storage AddAzureBlobService() Aspire.Azure.Storage.Blobs
KeyVault AddAzureKeyVaultSecrets() Aspire.Microsoft.Azure.Cosmos
Table storage AddAzureTableService() Aspire.Azure.Security.KeyVault
Service bus AddAzureServiceBus() Aspire.Azure.Messaging.ServiceBus
CosmosDB AddAzureCosmosDB() Aspire.Azure.Data.Tables

� Shawn Wildermuth
�

Aspirational .NET: What Is .NET Aspire?

58 codemag.comDistributed Caching: Enhancing Scalability and Performance in ASP.NET 8 Core

ONLINE QUICK ID 2403081

Distributed Caching:
Enhancing Scalability and
Performance in ASP.NET 8 Core
In the realm of enterprise applications, a deep understanding of distributed caching intricacies and adherence to best practices
are essential to building enterprise applications that are scalable and high performant. You can choose from the popular
distributed caching frameworks, such as Memcache, NCache, Redis, and Hazelcast. In this article, I'll discuss distributed caching,

its benefits and use cases, and then teach you how to
implement it in ASP.NET Core. If you’re to work with the
code examples discussed in this article, you need the fol-
lowing installed in your system:

•	 Visual Studio 2022
•	 .NET 8.0
•	 ASP.NET 8.0 Runtime

If you don’t already have Visual Studio 2022 installed on
your computer, you can download it from here: https://
visualstudio.microsoft.com/downloads/.

In this article, I’ll examine distributed caching, its fea-
tures and benefits, the challenges, and how you can
implement distributed caching using NCache and Mem-
Cached.

Joydip Kanjilal
joydipkanjilal@yahoo.com

Joydip Kanjilal is an MVP
(2007-2012), software
architect, author, and
speaker with more than
20 years of experience.
He has more than 16 years
of experience in Microsoft
.NET and its related
technologies. Joydip has
authored eight books,
more than 500 articles,
and has reviewed more
than a dozen books.

Figure 1: Caching at work

59codemag.com Distributed Caching: Enhancing Scalability and Performance in ASP.NET 8 Core

sient storage, i.e., the memory for faster access to the
cached data for all subsequent requests. In distributed
caching, data is stored on multiple nodes, i.e., the cached
data is spread across several systems. In client-side cach-
ing, the cached data is stored on the client computer,
such as on the web browser.

An Overview of Distributed Caching
An extension of caching called distributed caching is
the process of distributing the cache across several serv-
ers or machines. In a distributed caching environment,
the cache servers are spread across multiple nodes or
machines, allowing for scalability and improved perfor-
mance. The main purpose of distributed caching is to
store frequently accessed data in memory, rather than
fetching it from the hard drive or a remote database. This
improves the speed of data access because retrieving data
from memory is faster than disk access. (See Figure 2.)

Distributed cache systems combine the memory of several
networked computers into a single memory store for fast
data access. This explains why distributed caches aren’t
constrained by the limit of available memory of a single
computer or hardware component. They may go beyond
these boundaries by connecting numerous computers,

What Is Caching? Why Is It Needed?
Caching is a proven technique used to collect frequently
used data in a transient data store, known as a cache, for
subsequent retrieval when requested by the application.
This data store can reside in a transient storage such as
memory, or in a permanent storage such as in a file, or
even inside a database.

It should be noted that when a request for data is made,
the caching system first attempts to determine whether
the requested data already exists in the cache before at-
tempting to retrieve it. If the data is available in the
cache, you should be able to get it from there rather than
accessing the data from the original source. A major ben-
efit of this is that data can be retrieved from faster cache
storages in a significantly shorter period of time instead
of slower storage devices, such as remote databases or
hard drives. (See Figure 1.)

Caching strategies need to consider trade-offs between
cache size, cache eviction policies, and data consis-
tency. Optimal performance requires a balance between
cache utilization, data freshness, and data access pat-
terns. There are several caching types, such as in-memory
caching, distributed caching, and client-side caching. In
case of in-memory caching, the data is stored in a tran-

Figure 2: Distributed caching

60 codemag.com

frequently accessed closer to the application.
•	 Reliability: Distributed caching promotes reliability

by storing data across multiple servers. If a cache
server fails, the remaining servers can still serve the
cached data, ensuring data availability.

•	 High availability: Distributed caching systems can
easily handle increased traffic by adding servers,
enabling the systems to scale dynamically without
disrupting the existing operations, hence ensuring
high availability of the cached data.

•	 Resilience: Caching provides enhanced resilience
against temporary traffic spikes or database out-
ages. The cache data can be accessed quickly, pro-
viding a smoother user experience.

Building a Simple Distributed
Application in ASP.NET Core
It’s time for writing some code. Let’s now examine how to
build a simple ASP.NET Core 7 Web API application using
GraphQL.

Create a New ASP.NET Core 8 Project
in Visual Studio 2022
You can create a project in Visual Studio 2022 in several
ways. When you launch Visual Studio 2022, you'll see the
Start window. You can choose "Continue without code"
to launch the main screen of the Visual Studio 2022 IDE.

To create a new ASP.NET Core 8 Project in Visual Studio
2022:

Figure 3: Distributed
caching with multiple
nodes

forming a distributed architecture or distributed cluster,
enabling increased processing power and storage capac-
ity. (See Figure 3.)

Note that a distributed cache is based on DHT, an ac-
ronym for Distributed Hash Table. In this DHT, the data
is stored as key-value pairs. Each participating node can
retrieve the value using a key. DHT allows distributed
caches to be scaled dynamically by continuously manag-
ing additions, deletions, and node failures.

Some typical examples of widely used distributed caching
systems include NCache, Redis, and Memcached. These
systems leverage distributed cache mechanisms and offer
APIs for faster data storage and retrieval.

Benefits
Distributed caching offers several benefits, including:

•	 Scalability: With a surge in traffic for an applica-
tion, you can add additional cache servers to the
distributed cache system without disrupting exist-
ing operations.

•	 Reduced latency: With distributed caching, cached
data is usually stored in an in-memory data store,
enabling blazing fast access and reducing latency
caused by fetching data from the disk or any remote
services.

•	 Performance: A distributed caching system reduces
the latency associated with fetching frequently ac-
cessed data from disks or remote services by caching

Distributed Caching: Enhancing Scalability and Performance in ASP.NET 8 Core

61codemag.com

data closer to users in different regions. This de-
creases the amount of time that’s otherwise needed
to access data across long network distances, im-
proving performance and reducing latency.

Distributed Caching Best Practices
Implementing distributed caching requires adherence to
several best practices:

•	 Cache invalidation: Decide on a cache invalida-
tion strategy ensuring that the cached data re-
mains up to date. Consider options like time-to-live
(TTL) based expiration, explicit cache invalidation,
or event-driven invalidation mechanisms based on
data changes or updates.

•	 Eviction policies: Choose appropriate eviction
policies for your distributed cache. Cache eviction
policies help manage cache data and determine how
and when they’re removed from the cache. There are
three types of eviction policies: least recently used
(LRU), least frequently used (LFU), and fixed size
evictions.

•	 Cache sizing and capacity planning: Estimate the
cache size and capacity requirements based on the
volume of data and expected workload. Consider
factors like memory availability, cache server capa-
bilities, and future growth to ensure that the cache
can handle the anticipated load.

•	 Proper key design: Design cache keys with care.
Use meaningful and unique keys that are easy to
generate and parse. Avoid overusing complex ob-
jects or dynamic data as keys, as it can negatively
impact cache performance.

•	 Monitor and tune performance: Regularly monitor
and measure the performance of your distributed
cache to identify bottlenecks, cache hit ratios, and
review other performance indicators. Adjust cache
configuration, eviction policies, or cache server ca-
pacity, if necessary, to optimize performance.

•	 Implement failover and replication: Ensure high
availability and fault tolerance by implementing
failover mechanisms and data replication across
cache servers in case of failures. This helps main-
tain consistency and ensures uninterrupted access
to cached data.

•	 Security considerations: Pay attention to security
aspects, such as access control, authentication, and
encryption, to protect sensitive data stored in the
distributed cache.

•	 Appropriate data selection: Not all data is suitable
for caching. Identify data that’s frequently read but
infrequently updated, as this type of data benefits
most from caching. Avoid caching data that changes
very frequently.

•	 Cache invalidation strategy: Implement a robust
cache invalidation strategy to ensure data consis-
tency. This could be time-based (e.g., TTL—time to
live), event-driven, or a combination of both. When
a change occurs in the underlying data, it’s recom-
mended that you update the cache to ensure that
your cached data is always in sync with the data
residing in the data store.

•	 Data partitioning and sharding: Distribute data
across different cache servers to balance the load
and reduce risks of a single point of failure. Use

1.	 Start the Visual Studio 2022 IDE.
2.	 In the “Create a new project” window, select “ASP.

NET Core Web API” and click Next to move on.
3.	 Specify the project name as DistributedCachingDemo

and the path where it should be created in the “Con-
figure your new project” window. If you want the
solution file and project to be created in the same
directory, you can optionally check the “Place solu-
tion and project in the same directory” checkbox.
Click Next to move on.

4.	 In the next screen, specify the target framework and
authentication type as well. Ensure that the "Con-
figure for HTTPS," "Enable Docker Support," and the
“Enable OpenAPI support” checkboxes are unchecked
because you won’t use any of these in this example.

5.	 Because you won’t be using minimal APIs in this ex-
ample, remember to leave the Use controllers (un-
check to use minimal APIs) checkbox checked.

6.	 Click Create to complete the process.

I’ll use this project in the subsequent sections of this
article.

Distributed Caching Use Cases
There are several use cases of distributed caching across
different domains and industries. Here are a few common
scenarios where distributed caching can help:

•	 High-traffic websites: Distributed caching can be
used to store frequently accessed web pages, HTML
fragments, or static content. By caching these el-
ements on distributed cache servers closer to the
users, they can be served quickly and reduce the
load on back-end servers, improving website perfor-
mance and scalability.

•	 Database caching: Distributed caching can be em-
ployed to cache frequently accessed database que-
ries or result sets. By storing this information in
memory, you can quickly respond to requests avoid-
ing the need for possibly expensive database queries
or redundant database hits.

•	 Microservices architecture: In a typical microser-
vices architecture, there can be many different ser-
vices communicating with each other, which can
increase latency due to network roundtrips. By us-
ing distributed caching, frequently accessed data
or computed results can be cached, minimizing the
need for repeated remote calls and reducing latency.

•	 Content delivery networks (CDNs): CDNs leverage
distributed caching to persist and also serve static
content that includes images, JavaScript, and CSS
files. By caching content in multiple edge servers
located geographically closer to users, CDNs can de-
liver content faster, reducing latency and improving
the user experience.

•	 Real-time analytics: In data-intensive applica-
tions, distributed caching can be used to store pre-
processed or computed data that is frequently ac-
cessed for real-time analytics. By caching this data,
applications can retrieve insights quickly, avoid-
ing the latency associated with reprocessing vast
amounts of raw data.

•	 Geographically distributed applications: In glob-
ally distributed applications, distributed caching
can be used to store and serve frequently accessed

Distributed Caching: Enhancing Scalability and Performance in ASP.NET 8 Core

62 codemag.com

•	 Load balancing: Employ load balancing to distrib-
ute requests evenly across cache servers, thus en-
suring use of resources.

•	 Scalability: Ensure that your caching solution can
scale horizontally. As the demand increases, you
should be able to add more cache servers to the
system without significant changes to the existing
infrastructure.

sharding techniques to partition data effectively
based on usage patterns or other relevant criteria.

•	 Handling cache misses: Design your system to
handle cache misses gracefully. When the data re-
quested by the application isn’t available in the
cache, it’s known as a cache miss. Optimizing this
fallback mechanism is essential for maintaining per-
formance.

Distributed Caching: Enhancing Scalability and Performance in ASP.NET 8 Core

Figure 4: The cache-aside pattern

Figure 5: The read-through pattern

Figure 6: Data is served from the cache for subsequent requests

63codemag.com

•	 When a request arrives, the application searches for
the data in the cache.

•	 If the data is available, the application returns the
cached data. This phenomenon is also known as a
cache-hit.

•	 On the other hand, if the data that has been re-
quested is unavailable in the cache, the application
retrieves data from the database and then populates
the cache with this data.

There are a few benefits of this approach:

•	 The cache contains only the data the application
has requested, thus ensuring that the cache size is
optimal and cost-effective.

•	 This strategy is simple and can provide immediate
performance benefits.

The downsides to this approach include:

•	 Because the data is loaded into the cache only in
the event of a cache miss, the initial response time
increases because of the additional roundtrips re-
quired to the database and the cache.

•	 Using this approach, the data is stored directly in
the database, which may result in discrepancies be-
tween the database and the cache.

Another pattern is called read through (see Figure 5). In
this pattern, the application queries the cache first. The
cache then interacts with the underlying database on a
lazy load basis. If the data requested by the application is
unavailable in the cache, it’s called a cache miss. In this
case, the application retrieves the requested data from
the data store (i.e., a database or a service, etc.), stores
this data into the cache, and then returns it.

The cached copy of the same data is then served for all
subsequent requests for the same piece of data.

Another pattern is write through (see Figure 7): This
pattern is similar to read through, but instead of read-

•	 Data security: You should establish the necessary
security measures by implementing security mea-
sures that include encryption of data in transit and
at rest, proper access controls, and authentication
mechanisms, etc.

•	 Monitoring and analytics: You should monitor the
performance of your cache system on a regular ba-
sis. In this regard, you can take advantage of met-
rics such as cache hit, miss rates, and load patterns
to optimize your caching strategy.

•	 Data synchronization: Ensure that the cache is
synchronized across all nodes in distributed envi-
ronments. To maintain data integrity, you can take
advantage of techniques such as distributed locking
or atomic operations.

•	 Selecting the right tool: Selection of the right
caching solution that satisfies the requirements
of your application is extremely important. Redis,
Memcached, and Hazelcast are popular tools with
varying features and capabilities.

•	 Avoid cache stampede: Implement strategies like
staggered TTLs, pre-computation, or using a proba-
bilistic early expiration to avoid a cache stampede,
where multiple instances try to compute and store
the same data in the cache simultaneously.

Distributed Caching Patterns
Cache patterns are an approach to application design
that emphasizes caching techniques to improve scal-
ability, performance, and responsiveness. These patterns
provide valuable insights and suggestions for implement-
ing caching techniques. Typically, these patterns are used
with distributed caching systems that include NCache or
Memcached. You can take advantage of these patterns to
reduce latency and improve your application's workload
processing capabilities.

One such pattern is called cache aside (see Figure 4).
The cache aside pattern adopts a lazy loading approach
and is the most used caching strategy. Here’s how this
pattern works:

Distributed Caching: Enhancing Scalability and Performance in ASP.NET 8 Core

Figure 7: The write-through pattern

Figure 8: The write-around pattern

64 codemag.com

Using NCache in
ASP.NET Core

To work with NCache in
ASP.NET Core, install the
following NuGet package:

NCache.Microsoft.Extensions.
Caching.OpenSource.

cache. A cache entry is removed when its time-to-
live (TTL) expires. You can employ this method when
the data in your application has a short duration,
like session data or refreshed data. It can prove ben-
eficial in scenarios where your application relies on
data that has a short lifespan such as session data
or data that undergoes frequent updates.

Distributed Caching Challenges
Although there are benefits, distributed caching poses
certain challenges as well:

•	 Data consistency: The main challenge with dis-
tributed caching is maintaining data consistency.
Caches may have different data versions or may ex-
perience replication delays, leading to data incon-
sistency.

•	 Cache invalidation: Implementing proper cache in-
validation and synchronization mechanisms or using
eventual consistency models can help mitigate this
challenge. Invalidating caches can be challenging,
especially when data is frequently changing or in-
terdependent. Ensuring that the cache is refreshed,
i.e., updated when underlying data changes, or em-
ploying strategies, such as cache expiration based
on time, can help maintain cache validity.

•	 Cache coherence: Cache coherence refers to en-
suring that all cache servers have consistent
data. Achieving cache coherence can be challeng-
ing, especially in scenarios where data is updated
frequently or when multiple cache servers are in-
volved. Employing distributed cache solutions that
provide strong consistency guarantees or using
cache coherence protocols can help address this
challenge.

•	 Cache warm-up: When a cache is empty or after
a cache server restarts, it takes time to populate
the cache with frequently accessed data. This ini-
tial period can result in cache misses and increased
latency until the cache is warmed up. Proper cache
warm-up strategies, such as preloading commonly
accessed data or using warm-up scripts, can help
minimize this issue.

•	 Cache eviction strategies: Since data access pat-
terns may differ across the nodes, it is quite chal-
lenging to implement cache eviction strategies in
a distributed cache environment. Careful consider-
ation should be given to selecting an eviction strat-
egy that aligns with your application's data access
patterns and requirements.

•	 Scaling: As the application load and data volume in-
crease, scaling the distributed cache can become a
challenge. Proper planning and architecture should
be in place to ensure that the cache can handle the
added load effectively.

ing data from the back-end system, it writes data to the
cache. In other words, when using a write through cache,
the order in which the cache is populated is reversed.
After a cache miss, the cache is not lazy loaded. Instead,
it’s proactively updated immediately following an update
to the database. Using this approach makes sense when
writing operations are frequent and application perfor-
mance is paramount.

Another pattern is write around (see Figure 8): In the
write around approach, the data is written directly to the
data store without storing it in the cache. When the ap-
plication performs a read operation, the data is placed in
the cache. This strategy is a good choice if your applica-
tion doesn't need to reread frequently written data.

Another pattern is write behind or write back (see Fig-
ure 9): In the write back approach, data is written di-
rectly to the cache alone instead of the data store. The
data store is updated with this cached data after specific
intervals of time, or based on certain pre-defined condi-
tions. Although this approach is beneficial in write-inten-
sive applications due to low latency and high throughput
capabilities, there are risks of data loss in the event of a
system crash etc.

Cache Eviction Strategies
Cache eviction involves the removal of cache entries or
data from a cache based on specific conditions or rules
being satisfied. In distributed cache systems, cache evic-
tion algorithms are used to provide space for new data
and prevent the cache from going beyond its capacity.
There are various cache eviction strategies available for
removal of cache entries. Here are the key cache eviction
strategies you can explore:

•	 Least recently used (LRU): Per this strategy, the
cache item that’s been accessed the least recently
is removed from the cache when the cache reaches
its maximum capacity. Note that this approach as-
sumes entries that have been the least used will not
be used again in the near future.

•	 Most recently used (MRU): Cache entries that have
been accessed most recently are evicted when the
cache is full. As per this assumption, entries that
have been used more recently are less likely to be
used again in the near future.

•	 Least frequently used (LFU): This policy stipulates
that when the maximum cache capacity is reached,
the cache element accessed least frequently within
a certain period is removed. It asserts that entries
used less often are unlikely to be accessed in the
future.

•	 Time-to-live (TTL): This policy defines the duration
for which a cache entry should remain valid in the

Distributed Caching: Enhancing Scalability and Performance in ASP.NET 8 Core

Figure 9: The write-behind or write-back pattern

65codemag.com

Configuring NCache as an IDistributedCache Provider
To work with distributed caching using NCache, invoke
the AddNCacheDistributedCache method in the Program.
cs file to register NCache with the IoC container. Note
that the AddNCacheDistributedCache() method in NCache
is an extension method of the AddDistributedCache()
method pertaining to ASP.NET Core.

builder.Services.AddNCacheDistributedCache
(configuration =>
{
 configuration.CacheName = "demoCache";
 configuration.EnableLogs = true;
 configuration.ExceptionsEnabled = true;
});

If you’d like to work with multiple caches, use the follow-
ing code snippet to configure them in the Program.cs file:

builder.Services.
AddNCacheDistributedCacheProvider
(options =>
{
 options.CacheConfigurations =
 new NCacheConfiguration[] {
 new NCacheConfiguration() {
 CacheName = "myFirstCache",
 EnableLogs = true,
 ExceptionsEnabled = true
 },
 new NCacheConfiguration(){
 CacheName = "mySecondCache",
 EnableLogs = true,
 ExceptionsEnabled = true }
 };
});

Setting Up NCache in ASP.NET Core
To setup NCache in your system, follow these steps:

1.	 Download the NCache installer to your computer.
2.	 Open a command prompt window as administrator

and run the msiexec.exe utility to install NCache.

•	 Cache synchronization: In multi-level caching sys-
tems, where multiple caches, like local cache and
distributed cache, are used, ensuring proper syn-
chronization and consistency across different cache
layers can be challenging. You can prevent incon-
sistencies in your data by implementing the right
synchronization strategies.

•	 Network overhead: Distributed caching systems re-
quire communication and synchronization between
cache servers, which introduces network overhead.
High network latency or limited bandwidth can af-
fect cache performance and overall application re-
sponsiveness.

•	 Complexity and maintenance: For the cache in-
frastructure to operate smoothly, it must be prop-
erly maintained, monitored, and troubleshot with
proper expertise and resources. Implementation
of a distributed caching system, in the applica-
tion architecture introduces increased complex-
ity in terms of implementation, management, and
monitoring.

•	 Application compatibility: Some applications may
not be designed to work seamlessly with distributed
caching or may have dependencies that don't sup-
port caching effectively. Evaluate and modify the
application to ensure compatibility with the distrib-
uted caching approach.

Distributed Caching in ASP.NET Core
Support for distributed caching is in-built in ASP.NET
Core using the IDistributedCache interface. The IDistrib-
utedCache interface helps you to plug in any thirty-party
caching frameworks. Listing 1 illustrates how the IDis-
tributedCache interface looks.

As evident from the source code of the IDistributedCache
interface, its Get method returns byte[]. Nevertheless, the
framework provides extension methods for working with
string objects. In addition, you can implement custom
extension methods to make it work with other data types.

Enabling Distributed Caching in ASP.NET Core
You can enable distributed caching in your ASP.NET Core
application by adding the following code snippet in the
Program.cs file:

builder.Services.AddDistributedMemoryCache();

You can now use the IDistributedCache interface to im-
plement distributed caching in your ASP.NET Core appli-
cation.

Implementing Distributed Caching Using NCache
NCache is a fast, open-source, cross-platform, distribut-
ed, in-memory caching framework. It’s adept at enhanc-
ing the scalability and performance of your applications
by caching frequently accessed data instead of storing to
and retrieving the data and from the database. There are
a variety of caching features in NCache, including object
caching, SQL caching, full-text search, and distributed
caching, and there are use cases such as web sessions,
ASP.NET output caching, and enterprise caching. NCache
supports Docker and Kubernetes and various caching to-
pologies, including replicated, partitioned, and client-
side caching.

Distributed Caching: Enhancing Scalability and Performance in ASP.NET 8 Core

public interface IDistributedCache
{
 byte[] Get(string key);
 Task<byte[]>
 GetAsync(string key);
 void Set(string key,
 byte[] value,
 DistributedCacheEntryOptions
 options);
 Task SetAsync(string key,
 byte[] value,
 DistributedCacheEntryOptions
 options);
 void Refresh(string key);
 Task RefreshAsync(string key);
 void Remove(string key);
 Task RemoveAsync(string key);
}

Listing 1: The IDistributedCache Interface

66 codemag.com

Using Distributed
Caching in SQL Server

To work with distributed
caching using SQL Server,
you must have the Microsoft.
Extensions.Caching.SqlServer
NuGet package installed.

That's all you have to do to install NCache on your com-
puter.

Store and Retrieve an Object Using NCache
Consider the following class:

public class Author
{
 public int AuthorId { get; set; }
 public string? FirstName { get; set; }
 public string? LastName { get; set; }
 public bool IsActive { get; set; }
}

Listing 2 illustrates how you can leverage NCache to
store and retrieve an object:

Note that for the sake of simplicity, I’ve used a mini-
mal API only to demonstrate how NCache works. I’ve
added only one record here for the sake of brevity. When
you execute the application and browse the /test end-
point, the author record is displayed in the web browser.
When this endpoint is hit the first time, the author re-
cord is stored in the cache. For all subsequent requests
to this endpoint, the data is fetched from the cache
based on the expiration time set in the configuration.
In this example, the data resides in the cache for 60
seconds.

The complete code listing of the Program.cs file is given
in Listing 3 for your reference.

Implementing Distributed Caching using SQL Server
You can use SQL Server as a cache store as well. To get
started on this, create the database table to store cached
data in SQL Server.

You can take advantage of the sql-cache by creating a
command to create a database table for storing cached
data. If the sql-cache tool isn’t installed on your com-
puter, you can install it using the following command at
the Developer Command Prompt window:

dotnet tool install --global dotnet-sql-cache

You can use the following command to create a database
table for storing cached data in a SQL Server:

dotnet sql-cache create "Data Source=.;
Initial Catalog=MyCache;
Integrated Security=True;" dbo MyCacheData

To enable a distributed SQL Server cache service in an
ASP.NET Core application, write the following piece of
code in the Program.cs file:

builder.Services.
AddDistributedSqlServerCache(
options =>
{
 options.ConnectionString =
 builder.Configuration.
 GetConnectionString
 ("MyDBConnectionString");
 options.SchemaName = "dbo";
 options.TableName

msiexec /i "<<Specify the path of the NCache installer
 in your computer>>"\ncache.ent.net.x64.msi"

1.	 Once the installer is launched, you can observe three
different installation types: Cache Server, Developer/
QA, and Remote Client.

2.	 Select CacheServer and click Next to move on.
3.	 Specify the license key for the version of NCache

you're installing in your system.
4.	 If you don’t have a valid license key with you, click

on the “Get Installation Key” button to get an instal-
lation key.

5.	 You’re prompted to enter your name, your organiza-
tion’s name, and your email address.

6.	 Specify the location in your computer where NCache
should be installed. Click on Next to move on to the
next step.

7.	 Select the IP address to bind the NCache server. You
can stick to the default here.

8.	 Specify the account to run NCache in your system.
Select the Local System account and click Next to
move on.

Distributed Caching: Enhancing Scalability and Performance in ASP.NET 8 Core

app.MapGet("/Test",
async (IDistributedCache cache,
IHttpClientFactory httpClientFactory) =>
{
 const string cacheKey = "Test";
 List<Author>? authors = null;
 var cachedData =
 await cache.GetStringAsync(cacheKey);

 if (!string.IsNullOrEmpty(cachedData))
 {
 authors =
 System.Text.Json.JsonSerializer.Deserialize
 <List<Author>>(cachedData);
 }

 else
 {
 Author user = new Author()
 {
 AuthorId = 1,
 FirstName = "Joydip",
 LastName = "Kanjilal",
 IsActive = true
 };

 authors = new List<Author>();
 authors.Add(user);

 await cache.SetStringAsync
 (cacheKey,
 System.Text.Json.JsonSerializer.Serialize
 (authors),
 new DistributedCacheEntryOptions
 {
 AbsoluteExpirationRelativeToNow
 = new TimeSpan(0, 0, seconds: 60)
 });
 }

 return authors;
});

Listing 2: Store/Retrieve data using the IDistributedCache interface

67codemag.com

 = "MyCacheData";
});

Now refer to the DistributedCachingDemo ASP.NET Core
project you created earlier. Create a new class called Prod-
uct in a file named Product.cs and replace the default
generated code with the following code:

public class Product
{
 public Guid Id
 { get; set; }
 public string Name
 { get; set; }
 public int Quantity
 { get; set; }
 public decimal Price
 { get; set; }
}

Create a new API controller named MySQLServerCacheDe-
moController in a file having identical name with a .cs
extension and write the code found in Listing 4 there.

A Real-World Use Case: Implementing Distributed
Caching Using MemCached
Memcached is an open-source, high-performance, distrib-
uted, in-memory caching system that aims to improve the
scalability and performance of web applications by less-
ening the need to retrieve data from databases or other

Distributed Caching: Enhancing Scalability and Performance in ASP.NET 8 Core

using Alachisoft.NCache.Caching.Distributed;
using Microsoft.Extensions.Caching.Distributed;

var builder = WebApplication.CreateBuilder(args);

// Add services to the container.

builder.Services.AddNCacheDistributedCache
(configuration =>
{
 configuration.CacheName = "demoCache";
 configuration.EnableLogs = true;
 configuration.ExceptionsEnabled = true;
});

builder.Services.AddHttpClient();
var app = builder.Build();

app.MapGet("/Test", async
(IDistributedCache cache,
IHttpClientFactory httpClientFactory) =>
{
 const string cacheKey = "Test";
 List<Author>? authors = null;
 var cachedData =
 await cache.GetStringAsync(cacheKey);

 if (!string.IsNullOrEmpty(cachedData))
 {
 authors = System.Text.Json.JsonSerializer.
 Deserialize<List<Author>>(cachedData);
 }

 else
 {
 Author user = new Author()

 {
 AuthorId = 1, FirstName = "Joydip",
 LastName = "Kanjilal", IsActive = true
 };

 authors = new List<Author>();
 authors.Add(user);

 await cache.SetStringAsync
 (cacheKey, System.Text.Json.
 JsonSerializer.
 Serialize(authors),
 new DistributedCacheEntryOptions
 {
 AbsoluteExpirationRelativeToNow
 = new TimeSpan(0, 0, seconds: 60)
 });
 }

 return authors;
});

app.Run();

class Author
{
 public int AuthorId { get; set; }
 public string? FirstName { get; set; }
 public string? LastName { get; set; }
 public bool IsActive { get; set; }
}

Listing 3: The Program.cs file

external resources. Memcached is mainly used to reduce
the load on database servers and improve the overall ef-
ficiency of applications by storing the results of data-
base queries and other computationally intensive results
in memory. Data for subsequent redundant queries can
be served from the cache by storing information in the
cache, avoiding the database access time and computa-
tional overhead. This significantly improves performance
and scalability compared to accessing the original data
sources for every request.

Avoiding database access time
and computational overhead
significantly improves performance
and scalability.

In this section, you’ll implement a simple OrderProcess-
ing application. To keep things simple, this application
only displays one or more order records. The source code
of this application is comprised of the following classes
and interfaces:

•	 Order class
•	 IOrderRepository interface
•	 OrderRepository class
•	 OrdersController class

68 codemag.com

 { get; set; }
 public int Customer_Id
 { get; set; }
 public DateTime Order_Date
 { get; set; }
 public decimal Amount
 { get; set; }
}

Install NuGet Package(s)
The next step is to install the necessary NuGet Package(s).
To install the required package(s) into your project, right-
click on the solution and then select Manage NuGet Pack-
ages for Solution…. Now search for the package named
EnyimMemcachedCore in the search box and install it.

Alternatively, you can type the command shown below at
the NuGet Package Manager Command Prompt:

PM> Install-Package EnyimMemcachedCore

You can also install this package by executing the follow-
ing commands at the Windows Shell:

dotnet add package EnyimMemcachedCore

Create the MemCacheProvider Class
Now you need a class that acts as a wrapper on IMem-
cachedClient so as to encapsulate all calls to store and re-
trieve data to and from the cache. This not only simplifies
access to the cache, it also ensures that you don’t need to
write code to manage cache in your controller or reposi-
tory classes. Now, create a class named MemCacheProvider
and write the code from Listing 3 in there.

Create the Model Clasess
In a typical order management system, you’ll have several
entity or model classes. However, for the sake of simplic-
ity, I’ll consider and use only one entity or model class
here. Create a new class named Order in a file having the
same name with a .cs extension and write the following
code in there:

public class Order
{
 public int Order_Id

Distributed Caching: Enhancing Scalability and Performance in ASP.NET 8 Core

public class MemCacheProvider : IMemCacheProvider
{
 private readonly
 IMemcachedClient memcachedClient;
 public MemCacheProvider
 (IMemcachedClient memcachedClient)
 {
 this.memcachedClient = memcachedClient;
 }
 public T GetCachedData<T>(string key)
 {
 return memcachedClient.Get<T>(key);
 }
 public void SetCachedData<T>
 (string key, T value,
 int duration)
 {
 memcachedClient.Set
 (key, value, duration);
 }
}

Listing 5: The MemCacheProvider class

 [Route("api/[controller]")]
 [ApiController]
 public class MySQLServerCacheDemoController :
 ControllerBase
 {
 private readonly
 IDistributedCache _distributedCache;
 private readonly
 string key = "MySQLServerCacheDemo";
 public MySQLServerCacheDemoController
 (IDistributedCache distributedCache)
 {
 _distributedCache = distributedCache;
 }

 [HttpGet("GetProduct")]
 public async Task<Product> GetProduct()
 {
 byte[] cachedObject =
 await _distributedCache.
 GetAsync(key);

 if (cachedObject != null)
 {
 var cachedObjectAsJson
 = System.Text.Encoding.UTF8.
 GetString(cachedObject);
 var product = JsonSerializer.
 Deserialize<Product>
 (cachedObjectAsJson);
 if (product != null)

 {
 return product;
 }
 }

 var result = new Product()
 {
 Id = Guid.NewGuid(),
 Name = "HP Envy Laptop",
 Price = 5000,
 Quantity = 1
 };

 byte[] serializedObject
 = JsonSerializer.
 SerializeToUtf8Bytes(result);
 var options =
 new DistributedCacheEntryOptions
 {
 AbsoluteExpirationRelativeToNow
 = new TimeSpan(0, 0, seconds: 60)
 };

 await _distributedCache.SetAsync
 (key, serializedObject, options);
 return result;
 }
 }

Listing 4: The MySQLServerCacheDemoController class

69codemag.com

Namespaces Required
for NCache

To work with NCache in
ASP.NET Core, include the
following namespaces in your
program:

Alachisoft.NCache.Caching.
Distributed

Microsoft.Extensions.Caching.
Distributed

returned from there; otherwise, the data is retrieved from
the database. Once the data is retrieved from the data-
base, the cache is populated with this data. Lastly, this
data is returned:

public async Task<List<Order>> GetOrders()
{
var result = _memCacheProvider.
GetCachedData<List<Order>>(key);

 if(result != null)
 {
 return result;
 }

 _memCacheProvider.SetCachedData
 <List<Order>>(key, orders, 600);
 return await
 Task.FromResult(orders);
}

The complete source code of the OrderRepository class is
given in Listing 6.

Register and Configure the MemCached Instance
The following code snippet illustrates how an instance of
type IOrderRepository is added as a scoped service to the
IServiceCollection.

builder.Services.AddScoped
<IOrderRepository,
OrderRepository>();

Next, register and configure MemCached using the follow-
ing piece of code in the Program.cs file:

builder.Services.
AddEnyimMemcached(mc =>
{

The MemCacheProvider class implements the IMem-
CacheProvider interface and wraps access to the cache
using an instance of type IMemcachedClient. Here is the
source code of the IMemCacheProvider interface:

public interface IMemCacheProvider
{
 T GetCachedData<T>(string key);
 void SetCachedData<T>
 (string key, T value,
 int duration);
}

Create the OrderRepository Class
The OrderRepository class uses an instance of type IMem-
CacheProvider to interact with the cache. This instance is
injected in the constructor of the OrderRepository class.
Now, create a new class named OrderRepository in a file
having the same name with a .cs extension. Next, write
the following code in there:

public class OrderRepository : IOrderRepository
{

}

The OrderRepository class implements the methods of the
IOrderRepository interface. For the sake of simplicity, I
have only one method called GetOrders. Here is how the
IOrderRepository interface should look:

public interface IOrderRepository
{
 public Task<List<Order>> GetOrders();
}

The OrderRepository class implements the GetOrders
method of the IOrderRepository interface. In this method,
you first check whether the data requested is available
in the cache. If the data is available in the cache, it’s

Distributed Caching: Enhancing Scalability and Performance in ASP.NET 8 Core

 public class OrderRepository: IOrderRepository {
 private
 const string key = "MemCacheDemo";
 private readonly
 IMemCacheProvider _memCacheProvider;
 private readonly List <Order> orders
 = new List <Order> {
 new Order {
 Order_Id = 1,
 Customer_Id = 2,
 Amount = 125000.00 m,
 Order_Date = DateTime.Now
 },
 new Order {
 Order_Id = 2,
 Customer_Id = 1,
 Amount = 200000.00 m,
 Order_Date = DateTime.Now
 },
 new Order {
 Order_Id = 3,
 Customer_Id = 3,
 Amount = 750000.00 m,
 Order_Date = DateTime.Now
 }

 };
 public OrderRepository
 (IMemCacheProvider memCacheProvider) {
 _memCacheProvider = memCacheProvider;
 }
 public async
 Task <List <Order>> GetOrders() {
 var result =
 _memCacheProvider.GetCachedData
 <List<Order>> (key);

 if (result != null) {
 return result;
 }

 _memCacheProvider.SetCachedData
 <List<Order>> (key, orders, 600);
 return await Task.FromResult(orders);
 }
 }

Listing 6: The OrderRepository Class

70 codemag.com

In the first call to this endpoint, the data is fetched from
the database and it’s fetched from the cache for all sub-
sequent calls to this endpoint. The cache is invalidated
after the specified timespan elapses.

There are a lot of details,
but in the end, distributed
caching is fairly simple.

Conclusion
Caching is a proven and established technique used to
improve an application's performance, scalability, and re-
sponsiveness by storing frequently accessed data in tran-
sient storage, such as the memory or other permanent
storage like a file or a database. In distributed caching,
the cached data is spread across multiple nodes, often in
different networks. As cached data is readily accessible,
it ensures enhanced reliability during unexpected peaks
or failures.

 mc.Servers.Add(new Server
 {
 Address = "localhost",
 Port = 11211
 });
});

The complete source code of the Program.cs file is given
in Listing 7 for reference.

The OrderController Class
Finally, create a new API controller class named Order-
Controller with the following code in there, as shown in
Listing 8.

The OrdersController class contains two action methods,
namely, the GetOrders method that returns a list of Order
instances. This action method calls the GetOrders method
of the OrderRepository class respectively. Note how an
instance of type IOrderRepository is injected in the Order-
sController class using constructor injection.

When you run the application and browse the /getorders
endpoint, the order data is displayed in the web browser.

� Joydip Kanjilal
�

[Route("api/[controller]")]
[ApiController]
public class OrdersController : ControllerBase
{
 private IOrderRepository _orderRepository;
 public OrdersController
 (IOrderRepository orderRepository)
 {
 _orderRepository = orderRepository;
 }

 [HttpGet("GetOrders")]
 public async Task<List<Order>> GetOrders()
 {
 return await _orderRepository.GetOrders();
 }
}

Listing 8: The OrderController Class

using DistributedCachingDemo;
using Enyim.Caching.Configuration;

var builder = WebApplication.CreateBuilder(args);

// Add services to the container.

builder.Services.AddControllers();
builder.Services.
AddScoped<IOrderRepository, OrderRepository>();
builder.Services.
AddSingleton<IMemCacheProvider>(x =>
ActivatorUtilities.CreateInstance
<MemCacheProvider>(x));
builder.Services.AddEnyimMemcached(mc =>
{
 mc.Servers.Add(new Server

 {
 Address = "localhost",
 Port = 11211
 });
});

var app = builder.Build();

// Configure the HTTP request pipeline.

app.UseAuthorization();

app.MapControllers();

app.Run();

Listing 7: The Complete Source of Program.cs file

Distributed Caching: Enhancing Scalability and Performance in ASP.NET 8 Core

71codemag.com

ONLINE QUICK ID 2403091

C# for High-Performance Systems

C# for High-Performance Systems
My day job is writing a database engine named RavenDB. My preferred language to code in is C#. Those two facts tend to cause
glitches in some people’s minds. How can you write a database engine, which is all about low-level system programming, in a
high-level language such as C#? How much performance are you leaving on the table by not choosing a proper system-level

language, such as C++ or Rust? It turns out that there isn’t
a conflict between the two. You can write high-performance
code in C# that matches or beats the performance of native
code. The best part is that you can achieve that while retain-
ing many of the advantages that C# offers in the first place.

C# has a lot of expressiveness and high-level concepts,
but from the get-go, it has some critical features for low-
level systems. Value types, pointers, and unsafe code
have all been part of C# from its initial creation. Recent
additions to the .NET platform, such as spans, vector in-
structions, and hardware intrinsics make it much simpler
to write high-performance and low-level code.

I want to be able to talk in concrete terms, so for the rest
of this article, I’m going to focus on a relatively straight-
forward task. The code accepts a CSV file (gzipped) and
computes aggregated statistics based on the data. You
can view a sample of the data in the file in Table 1.

I generated a large file to test how well this code per-
forms (the script to generate the data is available on-
line at: https://gist.github.com/ayende/e84dac76e5d-
c023f6a80367f6c01ac13), and obtained a file with 250
million records with 9.78 million unique users. The com-
pressed file size is about 2.4 GB. I intentionally chose a
large size, which should clearly demonstrate the differ-
ence in performance between approaches.

The task at hand is to compute the total quantity and
price for each user in the file. This is a simple task and
the code to write it is almost painfully obvious. The input
is a GZipped CSV file, so the first action is to decompress
the data and iterate through the file one line at a time,
as shown in Listing 1.

For reference, if I were to execute GzipReadlAllLines-
Async(input).CountAsync() alone, it would iterate over
the entire file and count the number of lines in it. Execut-
ing this code on my machine yields the following results:

•	 Total allocations: 53 GB
•	 Execution time: 47 seconds

This is without doing any actual work, mind. It’s just
reading through the dataset.

The next task is to actually do something with the data
and generate the aggregated results. I’ll start from high-
level code and write the aggregation using LINQ. Using
the System.Linq.Async package, you can apply a LINQ
expression to the results of GzipReadlAllLinesAsync(),
which will do all the computation in a very clear fashion.
You can see how this looks in Listing 2.

Before I discuss performance, I’d like you to take a look at
Listing 2 and see how I was able to write precisely what

I wanted in an extremely succinct and expressive manner.
The fact that I can do that so simply is one of the great
strengths of C#, in my opinion. But good-looking code
is just the first stage, let’s see how well it performs at
runtime.

When evaluating the performance of a piece of code, it’s
important not to look at just a single parameter. It’s easy
to trade off execution time for memory usage, for exam-
ple. I’m running all the code in this article using .NET 8.0
in release mode. Here are the execution results:

•	 Peak memory: 18 GB
•	 Total allocations: 163 GB
•	 Execution time: 8 minutes, 19 seconds

Why am I mentioning memory and allocations in my met-
rics? The value of “total allocations” refers to the amount
of memory the system has allocated over its lifetime,
while “peak memory” represents the maximum amount of
memory used at any given point in time. When talking
about .NET programs, reducing allocations tends to have
an outsized impact on performance, especially if you’re
running with multiple threads at once. That’s because the
more allocations you do, the more work the garbage col-
lector has to handle. With multiple threads all allocating
memory, it’s easy to reach a point where you’re mostly
burning CPU cycles on garbage collection.

The compressed file size is 2.4 GB, but uncompressed, the
data is about 3.7 GB. Given the amount of time that this
code took to run, it was processing under 8 MB a second.
That’s really bad. The reason for that is that the code
in Listing 2 is executing its operations in a sequential
manner. First, it runs through all the records in the file,
grouping them by the user ID, and only then does it run
the aggregation for each user. That means that it has to
retain the entire dataset in memory until it completes
the process.

Instead of using LINQ, you can choose to write the ag-
gregation code yourself. You can see the code for this in
Listing 3 where you’re basically doing the aggregation
inline. For each record, you look up the relevant user sta-
tistics and update them. You only need to keep track of
the users’ statistics, not the entire data set.

Oren Eini
ayende@ayende.com

Oren Eini started his
professional career as a
developer in 1999 with a
strong focus on the Micro-
soft and .NET ecosystem.
He has been a Microsoft
MVP since 2007. Oren’s
main focus is on archi-
tecture and best prac-
tices that promote quality
software and zero-friction
development.

Since 2008, he has been
building the RavenDB
database, a non-relational
database engine written
in C#. An internationally
known presenter, Oren
has spoken at conferences
such as DevWeek, QCon,
Oredev, NDC, and YOW!.

UserID ItemID Quantity Price Date
22271148092 5203189368466850000 91 7.03 24/12/2023 11:02:20

22271148092 1618666246057250000 2 11.49 24/12/2023 11:02:20

23392313395 7334974373793960000 1 40.69 24/12/2023 11:02:20

23145412223 2702876167686390000 2 15.56 24/12/2023 11:02:20

23145412223 5203189368466850000 2 7.03 24/12/2023 11:02:20

Table 1: Sample data from the orders CSV file.

72 codemag.comC# for High-Performance Systems

saved almost four-fifths (!) of the runtime and are using
about 5% (!) of the memory. That is an amazing differ-
ence by all accounts.

It’s also interesting to realize that the total amount of
allocation isn’t that drastically different. It’s 163 GB vs.
127 GB, even though all the other metrics are far bet-
ter. Why is that? Most of the allocations here are fairly
unavoidable because you read the lines from the file one
line at a time and generate a lot of strings. Additional
strings are also allocated during the parsing of each line
because you use Split(',').

The code in Listing 3 has far better performance than the
initial version, but it can still improve. A key issue is the
manner in which you process the data from the file. You’re
creating a lot of strings in the process, which is a big
waste; you can do better. Instead of allocating strings for
each line of the file, (remember, there are 250,000,000 of
them), you can use a lower-level API.

System.IO.Pipelines is one such low-level API that’s
meant to provide an efficient way to read (and write)
data in .NET. In particular, it uses a single reusable buf-
fer to do the work and allows you to access it directly
instead of performing allocations. The API is somewhat
less convenient to use, but the performance difference
more than makes up for this. Take a look at the code in
Listing 4, showing the skeleton of using Pipelines for
processing the file.

Unlike previous code listings, the code in Listing 4 isn’t
actually doing much; most of the work is handled by the
ProcessLines() method, which will be covered shortly.
What’s interesting here is that all the I/O is handled in
the parent method. You ask the pipe to read a buffer
from the stream and then process it. A key aspect is that
the buffer isn’t limited to a single line or is guaranteed
to be on a line boundary. Instead, you get some buffer
from the file (64KB in this case) and process everything
in it.

The really nice thing about the System.IO.Pipeline ap-
proach is that it encourages a highly efficient manner for
processing incoming data. Let’s take a look at Listing 5
where I actually do that and then I’ll discuss exactly what
is going on here.

The code in Listing 5 isn’t really doing much, but it’s one
of those cases where I removed everything non-essential
to expose the core beauty. The PipeReader is going to
read from the stream into a buffer, which is held by the
ReadResult. You use a SequenceReader<byte> to search
the current line in the buffer and return a reference (to
the same original buffer) to the range of the line. If you
can’t find a line break, that means that you need to read
more from the stream, so you inform the pipe reader how
far you read and until what point you’ve examined the
buffer. The next call to ReadAsync() (shown in Listing
4), will then know what can be discarded and what more
needs to be read from the stream.

There isn’t a lot of code here, but from an architectural
perspective, there’s a lot going on. The end result is that
you can use a single reusable buffer to process the data.
The ProcessLines() method also contains a loop. It’s go-

async IAsyncEnumerable<string>
 GzipReadlAllLinesAsync(Stream input) {
 using var gzipStream = new GZipStream(input,
 CompressionMode.Decompress);
 using var reader = new StreamReader(gzipStream);

 while (true) {
 string? line; = await reader.ReadLineAsync();
 if(line == null)
 break;
 yield return line;
 }
}

Listing 1: Decompressing and yielding the lines from the file.

ValueTask<Dictionary<long, UserSales>>
 Linq(Stream input) {
 return (from l in GzipReadlAllLinesAsync(input)
 .Skip(1) // skip header line
 let flds = l.Split(',')
 let item = new {
 UserId = long.Parse(flds[0]),
 Qty = int.Parse(flds[2]),
 Price = decimal.Parse(flds[3])
 }
 group item by item.UserId into g
 select new {
 UserId = g.Key,
 Quantity = g.SumAsync(x => x.Quantity),
 Total = g.SumAsync(x => x.Price)
 }).ToDictionaryAsync(x => x.UserId,
 x => new UserSales {
 Quantity = x.Quantity.Result,
 Total = x.Total.Result
 });
}

Listing 2: Computing total and quantity per user using Linq

async Task<Dictionary<long, UserSales>>
 StreamReaderAndDictionary(Stream input) {

 var sales = new Dictionary<long, UserSales>();
 await foreach(var line in
 GzipReadlAllLinesAsync(input).Skip(1)) {

 var fields = line.Split(',');
 var uid = long.Parse(fields[0]);
 int quantity = int.Parse(fields[2]);
 decimal price = decimal.Parse(fields[3]);

 if (!sales.TryGetValue(uid, out var stats))
 sales[uid] = stats = new UserSales();

 stats.Total += price * quantity;
 stats.Quantity += quantity;
 }
 return sales;
}

Listing 3: Manually aggregating over the records

What’s the result of executing this code, then? It’s going
to use less memory, but how much faster is it going to be?

•	 Peak memory: 917 MB
•	 Total allocations: 126,999 MB (127 GB)
•	 Execution time: 1 minute, 51 seconds

The amount of code that you wrote isn’t significantly dif-
ferent between Listing 2 and Listing 3. Both are pretty
clear and obvious in how they do things. However, you

73codemag.com C# for High-Performance Systems

ing to be running over the entire buffer, which is very
likely to contain many lines. Instead of operating on a
per-line basis, it’s now operating over a far bigger batch
of items. That also has implications with regard to per-
formance, because the hot loop needs to cover a lot less
code to do its job. The actual processing of the lines is
shown in Listing 6, which also contains some interesting
code patterns to talk about.

I’m afraid that the code is pretty dense, but the idea is
pretty simple. You use another SequenceReader<byte>
to find the terminators in the line buffer you’re given
here, you then use Utf8Parser to parse them without
needing to allocate any strings. The code is complicated
because it’s a single expression and because I wanted to
produce the correct error in the case of invalid input. Note
that I’m using an unconditional bitwise and (&) versus
the more common condition and (&&). This ensures that
the entire expression runs and avoids branch instructions.
This is the hotspot in the code, so anything that reduces
costs is advisable, and branches can be costly (even if
well predicted, as in this case).

I’m also not using the Dictionary as you’d normally ex-
pect. I’m calling CollectionsMarshal to get or add the
value. I’m not sure if you noticed, but Listings 4, 5,
and 6 all use UserSalesStruct as the value, instead of
UserSales (a class). That change allows you to avoid al-
locations even further and take advantage of the Get-
ValueRefOrAddDefault() behavior.

A very typical access pattern when using dictionaries is
to look up a value by key and create it if it isn’t in the
dictionary. This requires you to do two dictionary look-
ups if you need to create the value. The GetValueRef
OrAddDefault() means that you only need to do one.
Because a struct in C# is guaranteed to be zero initial-
ized, you don’t care if the value exists or not and you can
immediately add the current record values to the user’s
sales.

Finally, you might have noticed that the meth-
od in Listing 6 has an interesting attribute:
[MethodImpl(MethodImplOptions.AggressiveInlin-
ing)]. This is an instruction to the Just In Time compiler
to force inlining of this method to its caller. This allows
you to benefit from clear code and separation of responsi-
bilities while getting dense (and efficient) machine code.

The Pipeline version is spread over three code listings,
and I had to reach quite far out of the beaten path. What
did you get, then, from this journey? Take a look at these
results:

•	 Peak memory: 846 MB
•	 Total allocations: 1069 MB
•	 Execution time: 50.5 seconds

I triple checked those results because they are really
good. You can see the full results in Table 2, but the
Pipelines method is almost 50% faster than the Stream-
Reader + Dictionary approach you used in Listing 2. It’s
also literally allocating less than 1% of the memory.

The task of processing a file and aggregating the results
is a simple one. The sort of thing that’s commonly given

void ProcessLines(PipeReader pipeReader,
 ReadResult readResult,
 Dictionary<long, UserSalesStruct> salesData,
 ref bool header) {

 var sr = new SequenceReader<byte>(readResult.Buffer);
 while (true) {
 ReadOnlySequence<byte> line;
 if (sr.TryReadTo(out line, (byte)'\n') == false) {
 pipeReader.AdvanceTo(consumed: sr.Position,
 examined: readResult.Buffer.End);
 break;
 }
 if (header == false) {
 header = true;
 continue;
 }
 ProcessSingleLine(salesData, line);
 }
}

Listing 5: Processing lines in the buffer

[MethodImpl(MethodImplOptions.AggressiveInlining)]
void ProcessSingleLine(
 Dictionary<long, UserSalesStruct> salesData,
 ReadOnlySequence<byte> line)
{
 var lr = new SequenceReader<byte>(line);
 ReadOnlySpan<byte> span;
 var readAll = lr.TryReadTo(out span, (byte)',')
 & Utf8Parser.TryParse(span, out long userId, out _)
 & lr.TryAdvanceTo((byte)',')
 & lr.TryReadTo(out span, (byte)',')
 & Utf8Parser.TryParse(span, out int quantity, out _)
 & lr.TryReadTo(out span, (byte)',')
 & Utf8Parser.TryParse(span, out decimal price, out _);

 if (readAll == false)
 throw new InvalidDataException(
 "Couldn't parse expected fields on: " +
 Encoding.UTF8.GetString(line));

 ref var current = ref CollectionsMarshal
 .GetValueRefOrAddDefault(salesData, userId, out _);
 current.Total += price;
 current.Quantity += quantity;
}

Listing 6: Processing a single line

async ValueTask<Dictionary<long, UserSalesStruct>>
 PipelineAsync(Stream input) {
 using var gzipStream = new GZipStream(input,
 CompressionMode.Decompress);
 var pipeReader = PipeReader.Create(gzipStream,
 new StreamPipeReaderOptions(
 bufferSize: 64 * 1024)
);

 var header = false;
 var salesData = new Dictionary<long, UserSalesStruct>();
 while (true) {
 var valueTask = pipeReader.ReadAsync();
 var read = valueTask.IsCompleted ? valueTask.Result :
 await valueTask.AsTask();
 ProcessLines(pipeReader, read, salesData, ref header);
 if (read.IsCompleted)
 break;
 }

 return salesData;
}

Listing 4: Reading from the file using PipeReader

74 codemag.com

 v

M ar/Apr 2024
Volume 25 Issue 2

Group Publisher
Markus Egger

Editor-in-Chief
Rod Paddock

Managing Editor
Ellen Whitney

Content Editor
Melanie Spiller

Writers in This Issue
Philipp Bauer	 Markus Egger
Oren Eini	 Joydip Kanjilal
Wei-Meng Lee	 Sahil Malik
Shawn Wildermuth	 Mike Yeager

Technical Reviewers
Markus Egger
Rod Paddock

Production
Friedl Raffeiner Grafik Studio
www.frigraf.it

Graphic Layout
Friedl Raffeiner Grafik Studio in collaboration
with onsight (www.onsightdesign.info)

Printing
Fry Communications, Inc.
800 West Church Rd.
Mechanicsburg, PA 17055

Advertising Sales
Tammy Ferguson
832-717-4445 ext. 26
tammy@code-magazine.com

Circulation & Distribution
General Circulation: EPS Software Corp.
Newsstand:	 Ingram Periodicals, Inc.
	 International Bonded Couriers (IBC)
	 Media Solutions
	 Source Interlink International

Subscriptions

Circulation Manager
Colleen Cade
832-717-4445 ext. 28
ccade@codemag.com

US subscriptions are $29.99 USD for one year.
Subscriptions outside the US are $50.99 USD.
Payments should be made in US dollars drawn
on a US bank. American Express, MasterCard,
Visa and Discover credit cards accepted.
Back issues are available. For subscription
information, email subscriptions@code-magazine.com
or contact customer service at 832-717-4445 ext. 9.

Subscribe online at
www.code-magazine.com

CODE Developer Magazine
EPS Software Corporation / Publishing Division
6605 Cypresswood Drive, Ste 425, Spring, Texas 77379 USA
Phone: 832-717-4445

CODE COMPILERS

Table 2: Summary of performance and memory consumption across all scenarios

Scenario Time (sec) Allocations
(MB)

Peak memory
(MB)

Linq 499 166,660 18,286

StreamReader + Dictionary 111 117,272 917

Pipelines 50.5 1,069 846

as course assignments to students. It’s also a pretty good
scenario to test our capabilities because it’s so limited
in scope. The point of this article isn’t to point you to-
ward the System.IO.Pipelines API (although I’ll admit
that it’s a favorite of mine), it’s to demonstrate how
you can entirely change the manner in which you per-
form a task from the extremely high-level LINQ expres-
sion all the way down to reusable buffer and almost no
allocations.

C# and .NET allow you to create solutions for a very
wide range of scenarios. From building a business ap-
plication with a focus on correctness and time to mar-
ket, all the way down to database engines such as
RavenDB. In RavenDB, you’ll find that there is no such
thing as “fast enough.” You can spend literally months
optimizing a single piece of code to be just a little bit
faster.

You’re making a lot of use of seemingly esoteric features
such as hardware intrinsics, vector operations, and zero
allocation APIs. The nice thing about that is that you can
meet your performance goals while still writing in C#.

That isn’t just a personal preference of wanting to stay
in your comfort zone. I started writing C# code because
of the experience of getting an error with a proper error
message and a detailed stack trace, rather than some hex
code and “you figure it out.” That experience is still very
much true today: Using C# as the primary language for
RavenDB means that you can use all of the infrastructure
around .NET for profiling, debugging, and monitoring.
There’s also the quality of the tooling around .NET that
matters a lot.

Beyond exploring a small way in which you can improve
performance by an order of magnitude, I want to em-
phasize that performance is a journey. You need to align
your overall architecture and the algorithms you use with
the actual quality of implementation and micro-optimiza-
tions. Using RavenDB as an example again, it’s common,
in certain hotspots, to modify (C#) code in order to get
the right machine code for your needs. It’s quite amazing
that you can do that when you need to. Doubly so, as you
can do that for both x64 and ARM machines.

Finally, I’ll leave you with this to consider. It’s often best
to go the other way around. Look at the best practices for
high-performance implementations and then walk back-
ward to an architecture that would enable you to use
that. With that done, you can then selectively implement
the hotspots as needed, without having to struggle with
past architectural decisions.

C# for High-Performance Systems

� Oren Eini
�

MORE THAN JUST
A MAGAZINE!

TRAINING/MENTORING SECURITY
CUSTOM SOFTWARE DEVELOPMENT

STAFFING

©
sh

ut
te

rs
to

ck

Does your development team lack skills or time to complete all your business-critical software projects?
CODE Consulting has top-tier developers available with in-depth experience in .NET,
web development, desktop development (WPF), Blazor, Azure, mobile apps, IoT and more.

CONTACT US TODAY FOR A COMPLIMENTARY ONE HOUR TECH CONSULTATION.
NO STRINGS. NO COMMITMENT. JUST CODE.

codemag.com/code
832-717-4445 ext. 9 • info@codemag.com

UNLOCK
STAFFING
EXCELLENCE

STAFFING

Top-Notch IT Talent, Contract Flexibility, Happy Teams, and a
Commitment to Customer Success Converge with CODE Staffing

Our IT staffing solutions are engineered to drive your business forward while
saving you time and money. Say goodbye to excessive overhead costs and
lengthy recruitment efforts. With CODE Staffing, you’ll benefit from contract
flexibility that caters to both project-based and permanent placements. We
optimize your workforce strategy, ensuring a perfect fit for every role and
helping you achieve continued operational excellence.

Ready to Discuss Your IT Staffing Needs?

Visit our website to find out more about how we are changing
the staffing industry.

Website: codestaffing.com

Yair Alan Griver (yag)
Chief Executive Officer

Direct: +1 425 301 1590

Email: yag@codestaffing.com

