
Kafka
Event-Streaming Platform

J A N
F E B
2022

Laravel, Git, Async, Minimal APIs, CSVHelper, JQuery
co

de
m

ag
.c

om
 -

TH
E

LE
A

D
IN

G
 IN

D
EP

EN
D

EN
T

D
EV

EL
O

PE
R

M
AG

A
ZI

N
E

- U
S

 $
 8

.9
5

 C
an

 $
 1

1.
95

Managing CSV
Files With
CSVHelper

Exploring
Laravel:
Part 2

Going Knative
on Docker
Containers

and many more!

CHARLES LAMANNA
Corporate Vice President,
Business Applications &

Platform, Microsoft

SCOTT GUTHRIE
Executive Vice President,

Cloud + AI Platform,
Microsoft

SCOTT HANSELMAN
Partner Program Manager,

Microsoft

SCOTT HUNTER
Vice President Director,

Product Management, Azure,
Microsoft

The Intersection of Technology

DEVintersection.com AzureAIConf.com M365Conf.com
203-527-4160 m–f, 12-4 est

DAN WAHLIN
Cloud Developer Advocate

Manager, Microsoft

JEFF TEPER
Corporate Vice President,

Microsoft Teams,
Microsoft SharePoint,

Microsoft OneDrive, Microsoft

DAN HOLME
Principal Product Manager
Lead for Yammer, Microsoft

PAUL YUKNEWICZ
Lead Product Manager,

Microsoft

JOHN PAPA
Principal Developer Advocate

Lead, Microsoft

KATHLEEN DOLLARD
Principal Program

Manager, Microsoft

JEFF FRITZ
Senior Program Manager,

Microsoft

KARUANA GATIMU
Principal Manager, Customer Advocacy
Group, Microsoft Teams Engineering,

Microsoft

Featuring a bonus track dedicated to Microsoft Viva

Surface
Headphones

Surface
Earbuds

When you REGISTER EARLY for a
WORKSHOP PACKAGE, you’ll
receive a choice of hardware or
hotel gift card!
Go to DEVintersection.com or
M365Conf.com for details.

iPad Mini

APRIL 2022 REGISTRATION
for all conferences Surface Go 3

Here are just a few of the topics covered in sessions and workshops:

.NET 6 • .NET MAUI • BLAZOR • C# 10 • ANGULAR • AZURE • AI

AZURE SQL • MODERN DATA • SQL SERVER • KUBERNETES • DEVOPS

PROJECT DESIGN & UI • SECURITY • MACHINE LEARNING • AZURE LOGIC

MICROSOFT POWER PLATFORM • MICROSOFT TEAMS • MICROSOFT SHAREPOINT

Las Vegas, NV
MGM GRAND

April 5–7, 2022
Workshops April 3, 4, 8

and many more!

CHARLES LAMANNA
Corporate Vice President,
Business Applications &

Platform, Microsoft

SCOTT GUTHRIE
Executive Vice President,

Cloud + AI Platform,
Microsoft

SCOTT HANSELMAN
Partner Program Manager,

Microsoft

SCOTT HUNTER
Vice President Director,

Product Management, Azure,
Microsoft

The Intersection of Technology

DEVintersection.com AzureAIConf.com M365Conf.com
203-527-4160 m–f, 12-4 est

DAN WAHLIN
Cloud Developer Advocate

Manager, Microsoft

JEFF TEPER
Corporate Vice President,

Microsoft Teams,
Microsoft SharePoint,

Microsoft OneDrive, Microsoft

DAN HOLME
Principal Product Manager
Lead for Yammer, Microsoft

PAUL YUKNEWICZ
Lead Product Manager,

Microsoft

JOHN PAPA
Principal Developer Advocate

Lead, Microsoft

KATHLEEN DOLLARD
Principal Program

Manager, Microsoft

JEFF FRITZ
Senior Program Manager,

Microsoft

KARUANA GATIMU
Principal Manager, Customer Advocacy
Group, Microsoft Teams Engineering,

Microsoft

Featuring a bonus track dedicated to Microsoft Viva

Surface
Headphones

Surface
Earbuds

When you REGISTER EARLY for a
WORKSHOP PACKAGE, you’ll
receive a choice of hardware or
hotel gift card!
Go to DEVintersection.com or
M365Conf.com for details.

iPad Mini

APRIL 2022 REGISTRATION
for all conferences Surface Go 3

Here are just a few of the topics covered in sessions and workshops:

.NET 6 • .NET MAUI • BLAZOR • C# 10 • ANGULAR • AZURE • AI

AZURE SQL • MODERN DATA • SQL SERVER • KUBERNETES • DEVOPS

PROJECT DESIGN & UI • SECURITY • MACHINE LEARNING • AZURE LOGIC

MICROSOFT POWER PLATFORM • MICROSOFT TEAMS • MICROSOFT SHAREPOINT

Las Vegas, NV
MGM GRAND

April 5–7, 2022
Workshops April 3, 4, 8

www.devintersection.com
www.azureaiconf.com
www.m365conf.com

4 codemag.com

TABLE OF CONTENTS

4 Table of Contents

US subscriptions are US $29.99 for one year. Subscriptions outside the US pay $50.99 USD. Payments should be made in US dollars drawn on a US bank. American Express,
MasterCard, Visa, and Discover credit cards are accepted. Bill Me option is available only for US subscriptions. Back issues are available. For subscription information,
send e-mail to subscriptions@codemag.com or contact Customer Service at 832-717-4445 ext. 9.

Subscribe online at www.codemag.com

CODE Component Developer Magazine (ISSN # 1547-5166) is published bimonthly by EPS Software Corporation, 6605 Cypresswood Drive, Suite 425, Spring, TX 77379 U.S.A.
POSTMASTER: Send address changes to CODE Component Developer Magazine, 6605 Cypresswood Drive, Suite 425, Spring, TX 77379 U.S.A.

Features
8 	 �The Basics of Git

If you haven’t heard of Git, you’ve clearly been off the grid for a long
time. Sahil talks about this ubiquitous tool, and maybe shows you
something you didn’t know about it.
Sahil Malik

18 	 �Enhance Your MVC Applications
Using JavaScript and jQuery: Part 3
Paul continues his series on how to make your MVC applications more
fun to build and more comfortable for your users.
Paul D. Sheriff

29 	 �Software Development is
Getting Harder, Not Easier
Software development is complicated. You wouldn’t love it if it weren’t,
right? Mike talks about dealing with complexity like an old friend who’s
part of your projects.
Mike Yeager

32 	 �Beginner’s Guide to Deploying
PHP Laravel on the Google Cloud
Platform: Part 2
Bilal continues his series on the PHP Laravel framework by connecting the
app to a local MySQL database, involving the Google Cloud SQL service, and
then running a Laravel database migration from the Cloud Build workflow.
Bilal Haidar

48 	 �Working with Apache Kafka
in ASP.NET 6 Core
Kafka is an open-source high throughput, low latency messaging system
for distributed applications. Joydip shows you how it’s what you’ve been
waiting for.
Joydip Kanjilal

57 	 �The Secrets of Manipulating
CSV Files
Rod shows you that CSV is anything but old news.
Rod Paddock

62 	 �Minimal APIs in .NET 6
Controller-based APIs have been around for a long time, but .NET 6
changes everything with a new option. Shawn shows you how it works.
Shawn Wildermuth

66 	 �Simplest Thing Possible
John revives his old series with an interesting study of Tasks
so you can take your .NET feature to the next level.
John V. Petersen

69 	 �Running Serverless Functions
on Kubernetes
Peter explains how to automate load balancing, scaling, and
more, using Kubernetes’ primitives and container technology.
Peter Mbanugo

Columns
74 	 �CODA: On Plain Language

John uses the Agile movement to explain why simple is better.
John V. Petersen

Departments
6 	 Editorial

25 	 �Advertisers Index

73 	 Code Compilers

www.leadtools.com

6 codemag.comEditorial

Finding Inspiration
This editorial marks a huge milestone in my life: It officially marks the end of my first 20 years as editor in
chief of CODE Magazine. And before you get any ideas, this is NOT my last editorial! I have many more
years ahead of me to “entertain” you with my witty banter and deep knowledge of software engineering,

EDITORIAL

6

� Rod Paddock
�

ing about it. Like all new writers, I got a TON of
rejection letters, but I persevered and had some
minor successes. These successes drove me forward.

Programming
I was determined to be a writer until I discovered
programming. Programming has always been fun
for me and when I discovered databases in college,
I knew what I wanted to do for a career. I started in
the DOS era and have continued to write code for
over 30 years now. I still find enjoyment in slinging

code to this day. Over the years, I’ve had
the opportunity to work with some great
developers and have grown to be a fairly
skilled programmer myself. But however
skilled I became, I missed writing. It was
programming skills that eventually led me
back to writing.

Writing
In 1992, I decided to see if I could get pub-
lished in a computer magazine. I went to a
software conference and proposed an idea
to Dian Schaffhauser who was an editor at
Database Advisor Magazine. She accepted
and I went to work writing my first article.
One article led to another, and another,
and another and eventually it led to writing
books and finally to being EIC of CODE Mag-
azine. I’ve never stopped writing. As a mat-
ter of fact, I wrote an article for this issue!
Writing has been a source of inspiration to,
well, keep writing. It’s a sickness, I think.
Talk to me about writing books some time.

Finding YOUR Inspiration
I described just a few items that inspire
me. There are others: music, pop art, mov-
ies, and economics, to name a few. The
trick for you is to find what inspires you
and lean into it. Having sources of inspira-
tion is what makes our world go around. I
hope you find yours!

science, music, and Dungeons & Dragons. Some
of that statement is true.

When I started thinking about this editorial, I re-
viewed a bunch of my past editorials and was proud of
what we’ve accomplished at CODE Magazine in the last
20 years. It’s amazing how much things have changed
in that time. The early 2002 issues were all about this
new “.NET Initiative,” Web Services, XML, and XSLT.
The cloud was non-existent at the time, there was no
Twitter, no Facebook—heck, Amazon’s primary busi-
ness was selling books. How things have changed!

As some of you know, I was hired as EIC of
CODE Magazine via an instant messaging ses-
sion (ICQ I think) and, to be honest, this was a
dream come true. From the time I was in high
school, I dreamt of being a writer. Did I want
to be a tech writer? Heck no! I wanted to be
a Dungeons & Dragons writer. That dream was
partially filled in high school when I published
my first D&D article called “The Role of Taxes.”
I was a geek then and I’m a true geek now. So,
for those long-time readers (and new ones of
course), where am I going with this? Well, I
want to talk about inspiration.

As I was thinking about the things that in-
spired me and how to best represent them
in this editorial, I decided on a picture. Like
many geeks, I’ve spent decades collecting
various geek trophies of things I enjoy.
Figure 1 shows a bookshelf containing the
many, many things that provide me with
comfort and inspiration. I’m going to high-
light a few of them.

Star Wars
I’ll never forget the opening credits of
Star Wars. The title card read: “A long time
ago, in a galaxy far, far away….”. I fondly
remember my eight-year-old self writing
“books” about Star Wars with an oversized
pencil. Writing new adventures for Luke,
Leah, and Han were my bag.

Dungeons & Dragons
I discovered Dungeons & Dragons when I
was 12 years old. I remember getting my
first module on my 13th birthday called “The

Glacial Rift of the Frost Giant Jarl” Yes that was the
title and some 40 years later, I can still recite the
names of many of these modules. The names were
epic. D&D was (and still is) is an amazing game and
it took me to many mythological as well as real-
world places. From Greek to Roman to Norse to
Tolkien, every mythology was represented. As for
the real-world places, I met many other gamers in
high school (I was president of the Golden Dragon
Club at one point) and at numerous conventions in
places like Los Angeles and Milwaukie. I was deep
into this game, and that inspired me to start writ-

Figure 1: My collection of inspirational trophies

codemag.com

Does your development team lack skills or time to complete all your business-critical software projects?

CODE Consulting has top-tier developers available with in-depth experience in .NET,

web development, desktop development (WPF), Blazor, Azure, mobile apps, IoT and more.

Contact us today for a complimentary one hour tech consultation. No strings. No commitment. Just CODE.

codemag.com/code
832-717-4445 ext. 9 • info@codemag.com

MORE THAN JUST
A MAGAZINE!

TRAINING/MENTORING SECURITY

CUSTOM SOFTWARE DEVELOPMENT
STAFFING

www.codemag.com/code

8 codemag.com

ONLINE QUICK ID 2201021

The Basics of Git

The Basics of Git
I can’t think of any other skill besides Git that is universally applicable to any developer. It doesn’t matter if you write code in C#,
JavaScript, or Python, or for Windows or Mac or really anything else, there’s a solid chance that these days you use Git for source
control. And no, that doesn’t mean just GitHub. Git is an open standard backed by the Git community. Various other products,

such as Azure DevOps, Bitbucket, and Atlassian all support
Git. First things first. I’m going to avoid the lightning rod
discussion of whether Git is a good product or not. The real-
ity is that whether you like it or not, all of us use it. And
let’s be honest: It has proven to be scalable enough for the
largest source code repositories, and it’s pretty easy to get
started with, too.

Yet it’s one of those products that really drives me mad. So
I thought it might be worth writing an article, explaining
the basics of Git. With a strong foundation, you can build
taller buildings.

Centralized Source Control vs.
Decentralized Source Control
If you’ve worked with older versions of source control soft-
ware, such as Visual SourceSafe, Mercurial, PVCS, or many
others before that, you’re familiar with centralized source
control. In centralized source control, there’s a server in the
middle that all developers talk to. Any software project is
comprised of many files. If you wish to work on a certain file,
you check out that file. While that file is checked out, its sta-
tus is marked checked out in the centralized source control
repo. If any other developer wishes to overwrite that file,
they’re unable to, because it’s checked out to you. You need
to check in your changes first, and the other developer’s
changes are the other developer’s headache. The other de-
veloper must probably do a merge or something similar. All
of this works fine, but it has two main problems.

The first issue is what happens if that central server goes
down. You can continue to work on the previous snapshot
you pulled from the server. But sooner or later, when you
need to re-sync your changes to the server or check-in files,
you hit a wall. You can’t for instance, continue working with
source control locally. For that matter, you can’t work with
an alternate remote upstream location for the meantime,
such as a co-worker’s source control. And what if you want
source control on just your computer, without any need to
share with rest of the world, for a pet project that’s complex
enough to deem source control?

The second issue, of course, is scale. Centralized source con-
trol repos assume a small set of developers working very
closely together. These days, we all contribute to very large
source control repos, which are typical in popular open-
source projects. A centralized source control mechanism
that relies on locking in a central location to talk with sim-
ply doesn’t scale to the general complexity of large-scale
repos and a disconnected working model.

Both of these issues are fuzzy in nature. Visual SourceSafe
fans insist that there are workarounds to these problems.
But just because you can row to Japan in a tiny boat doesn’t
mean it’s a good idea. To the rest of the world, it’s clear that
we need a new approach, a decentralized source control.

The opposite of centralized source control is decentralized
source control, of which Git is an example. In decentralized
source control mechanism, you can have many locations
with the source control repo. These locations can be servers,
or they can even be your own local hard disk, or they can
be a coworker’s hard disk. You can merge changes between
these multiple source control repos. Also, you don’t rely on
exclusive check-in and check-out anymore. Instead, you rely
on merges and commits. This invariably has the downside of
merge conflicts. Good coding patterns, good architectural
practices, and writing good tests reduce this pain to some
degree, although don’t eliminate it.

Let’s start learning Git.

Install Git
Many development tools, such as XCode, already come with
Git packaged. Even if you already have Git on your computer,
it’s a good idea to update it. The instructions are unique
per operating system. Rather than rehashing instructions
here, I suggest that you visit https://git-scm.com/book/en/
v2/Getting-Started-Installing-Git and follow the instructions
per your operating system and install Git on your computer.

Once you’ve installed it, you should be able to run the com-
mand “git” on terminal. For Windows, you’ll notice that af-
ter installation, you get a special terminal called “Git bash”.
This is a special terminal/command window on Windows
that tries to emulate a Unix-like terminal. You’re welcome
to use it, although I’ve also used Git through the Power-
Shell window and never run into any issues. I do feel that
you should lean on a Unix-like terminal even on Windows,
because a lot of commands invariably end up making use of
Unix-like commands intertwined with Git commands. Most
devs mix and match them without even thinking about it.

Configure Git
Before you can use Git, you have to do some basic configu-
ration. At the bare minimum, you’ll need to specify a name
and email—this is your information, who are you when you
issue a commit. Of course, the server-side repo also authen-
ticates you through the various means that Git supports.

You can also optionally specify a default editor and I highly
recommend that you specify a line ending format as well.

Let’s perform this basic configuration on your computer.

When you perform Git configuration, you can do so at one of
three levels. You can do so at a global level, which affects all us-
ers on your computer. You can do so in your user profile, in which
case it will affect all work on the user’s profile. Or you can specify
at a folder level, where you wish to have certain settings affect
only certain repos. These settings go in a hidden file called “.git-
config”. My gitconfig looks like that shown in Figure 1.

Sahil Malik
www.winsmarts.com
@sahilmalik

Sahil Malik is a Microsoft
MVP, INETA speaker,
a .NET author, consultant,
and trainer.

Sahil loves interacting with
fellow geeks in real time.
His talks and trainings are
full of humor and practical
nuggets.

His areas of expertise are
cross-platform Mobile app
development, Microsoft
anything, and security
and identity.

https://twitter.com/sahilmalik
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git

9codemag.com The Basics of Git

One other thing I highly recommend is that if you’re on a
Mac or Linux environment, set up zsh with a theme called
“oh-my-zsh”. It makes great use of the Git plug-in and gives
you syntax highlighting on terminal and even tab comple-
tion. This can be seen in Figure 2. On Windows, you can
either use the instructions at https://winsmarts.com/run-
ning-oh-my-zsh-on-windows-10-6fcb0fbc736b, you can set
up WSL2, or you can use posh-git.

Initialize a Git Repo
A Git repo, or repository for short, lives in a folder. Go ahead
and create a new folder. I created one called “gitlearn”. To
initialize a new empty repository in this folder, when inside
this folder in terminal, issue the following command:

git init

This creates a new Git repository in this folder. Additionally, it
creates one branch in this empty repository. The name of the
branch by default is “master” although they let you configure
it to use “main” by default if you prefer. You can choose to
change the name of the initial default branch as follows:

git config --global init.defaultBranch "main"

What makes a folder a Git repository? Inside this folder is a
hidden folder called “.git”. This folder is where Git likes to
store all its inner workings. If you delete this folder, it’s no
longer a Git repository. I advise you to not hand-edit stuff
inside this folder. Leave it alone.

Commit Code
Let’s first understand the very basics of the Git workflow. A
typical project is comprised of multiple files and folders. In

First let’s configure the username and email address. Here’s
how. Remember to use your own username and email address.

git config --global user.name "Sahil Malik"
git config --global user.email sahilmalik@winsmarts.com

Next, let’s specify a default editor. By default, Git uses Vim. A lot
of people love Vim. Personally, I never have to restart my Mac
unless I’m trying to exit Vim. There are just too many damned
shortcut keys to remember. No, I don’t dislike it; in fact when
I am ssh’ed into a Docker container, using something such as
VSCode may not be an option. But I do find myself more produc-
tive in VSCode, so I’ll just set that as my default editor as follows.

git config --global core.editor "code --wait"

Of course, for the above to work, VSCode should be installed
and be in your path. Now, whenever you need to enter multi
line commit messages, or do stuff that requires any kind of
editing, VSCode pops up. Let’s try this. Run the below com-
mand to edit all your settings.

git config --global -e

As you can see, VSCode pops open with your .gitconfig set-
tings. No longer do you have to remember the shortcut
“shift_ZZ” to save and exit, because this isn’t Vim.

Figure 1 shows my settings that have a few additional things I
haven’t talked about. Your settings file may look slightly different.

Finally, let’s configure end of line settings. This is a very
important setting, so let’s understand what this is. On Win-
dows, an end of line looks like this:

text\r\n

On Mac/Linux, try this:

text\n

Notice the difference? Windows likes to use carriage return
and new line. The reasons for this are historical, and so deep-
ly rooted that Windows isn’t going to change. But this creates
a big problem when some of your developer friends are on
Macs and you’re on Windows. In fact, when contributing to
OSS projects, this will invariably be the case. So as a best
practice, perform the following configuration on Windows,

git config --global core.autocrlf true

This will cause Git to strip out the /rs (carriage returns)
when checking your files in.

Getting Help
There seem to be a lot of commands you need to remember
here. Luckily, there’s help. At any point, you can issue the
following command to get help:

git --help

And if you wish to get specific help on a sub command, you
can issue a command like this:

git config --help

Figure 1: VSCode as my default editor for Git.

Figure 2: Git with tab completion

https://winsmarts.com/running-oh-my-zsh-on-windows-10-6fcb0fbc736b

10 codemag.comThe Basics of Git

Now let’s also add a server briefly. When you add commit-
ted code to your local repo, you can choose to “push” to
an upstream location. That upstream location is the server.
During the push, you may have to resolve conflicts, merge
your team members’ code, etc.

Finally, you have an area that sits in the middle of the com-
mitted area, and the working area, which is the staging
area. The staging area is your “proposal to commit.” Think
of it as: Okay I’ve been working on stuff in my local area,
and I’m ready to commit. And here is my proposal of what I
want to commit. For instance, I propose these three files to
be added, these two files to be renamed, etc. I “stage” those
changes in the staging area before I commit. And then I
commit.

Let’s see this in action. If you’ve been following this ar-
ticle sequentially, you should have an empty Git repo.
In this repo, go ahead and add a file like the next snip-
pet. Note that my commands shown here are for the *nix
shell, but you can extrapolate this on a Windows computer
also.

echo "first file" > readme.md

This command creates a file called “readme.md” with “first
file” as the text contents. Note how my zsh prompt has also
changed in Figure 3. I find this color change a very conve-
nient mechanism to know that my tree is dirty.

The yellowish color indicates that my repo has unstaged
changes. If I wish to see what the current status of my Git
repo is, I can use the following command.

git status

In my case, it should produce output as shown in Figure 4.

Git status tells me that I have an untracked file. That makes
sense, as I just added a new file, but Git isn’t tracking it for
me—I haven’t ever added it to my repo. To add it, I need to
commit it. But before I can commit it, I need to stage it. To
stage all changes, I can issue the following command.

git add .

Git, you have to think in three parts: local files, committed
files, and the staging area.

Your local files are your work-in-progress, also known as
working copy. Here, you’re making things, breaking things,
and editing stuff, and edits don’t preserve history. Git, of
course, tracks what files are being changed, added, or de-
leted. But if you edit a file multiple times in a single commit,
to Git, it appears as one edited file, not many versions of
this edited file. This is work in progress after all.

Then you have committed files. For now, let’s not mix in
server and client. The cool thing about Git is that even your
local hard disk has commits. I find this very useful when I’m
progressively building a project, and I commit as I go along.
I can revert back to a commit if I mess up or find out where
I messed up using diffs etc., all without involving a server.
See how productive Git is? Even without an Internet connec-
tion, I have so much power at my fingertips.

Figure 3: My prompt tells me that I have unstaged changes.

Figure 4: Git status tells me that I have an untracked file.

Figure 5: I have staged, but not yet committed.

Figure 6: My first commit

Figure 7: My code in the cloud

11codemag.com The Basics of Git

Or alternatively, I can say git add and pass in the specific
files I wish to stage. Notice again, in Figure 5, how my
prompt has changed.

Now to commit, I simply issue the following command.

git commit

This should pop open your default editor, in my case VSCode,
to enter a commit message. I could also say Git commit
-m “message” to avoid opening the editor. I’ll enter some
message like “My first commit” and save to commit. Now my
prompt should change as shown in Figure 6.

Congratulations, you just did your first commit. Now try ex-
ecuting Git status again. It should tell you that your working
tree is clean. You can see your history of commits by execut-
ing the following command.

git log

At any point, I really encourage you to type -h in front of any
command and examine what other options are supported.

That was fun, but there’s still so much more to learn:
branches, server-based stuff, forking, merging. So stay the
course, young Padawan.

Push Code to a Server
You’re a serious developer. You aren’t just writing this to
learn Git: You want to do some serious work. That means that
you need a server-based Git repo that can scale to the Inter-
net. An easy way to get such a repo, for free, is github.com.
Feel free to use any other product you wish. For my pur-
poses, I created a repo at https://github.com/maliksahil/
gitlearn. (This is a private repo, so you won’t be able to ac-
cess it. All of these repos are protected by permissions, so
you won’t be able to commit to mine, even if it were a public
repo. You should go and create your own.)

Now back to my local Git repo. I wish to push my local code
into the server-side repo. How does my local repo know
where to push to? The answer is that I need to add a remote
origin, and here’s how you do it:

git remote add origin
 git@github.com:maliksahil/gitlearn.git

Now wait a second. Let’s unpack this a bit. What’s that funny
looking syntax? How did Git authenticate me?

First of all, Git remote lets me manage tracked remote re-
positories. By saying Git remote add, I’m saying that I wish
to add a remote tracked repository. The origin keyword in-
dicates that here is where this project was originally cloned
from. You didn’t clone your project from the remote reposi-
tory, but you’re basically saying that in the process of set-
ting things up, in future, developers can clone from here.
The final parameter is the URL.

The way authentication works here is that by default, GitHub
uses username password. But that’s neither secure nor
manageable. So it also supports ssh, which is what I have
set up on my computer. Finally, you can use credential help-
ers to use alternate mechanisms of authentication as well.

®

 The Smart Choice for Text
Retrieval® since 1991

dtSearch.com 1-800-IT-FINDS

dtSearch’s document filters support:
• popular file types
• emails with multilevel attachments
• a wide variety of databases
• web data

Over 25 search options including:
• efficient multithreaded search
• easy multicolor hit-highlighting
• forensics options like credit card search

Developers:
• SDKs for Windows, Linux, macOS
• Cross-platform APIs cover C++, Java

and recent .NET (through .NET 6)
• FAQs on faceted search, granular data

classification, Azure, AWS and more

Visit dtSearch.com for
• hundreds of reviews and case studies
• fully-functional enterprise and

developer evaluations

Instantly Search
Terabytes

www.dtsearch.com
https://github.com/maliksahil/gitlearn

12 codemag.comThe Basics of Git

leases. Although nothing stops you from making changes to
“main”, it’s generally considered a bad idea. Most real-world
repositories set a policy on the Git repo to prevent making
changes to the “main” branch. The idea is that you create an
issue. Then you discuss what you wish to do on that issue.
You associate the issue with the files you’re changing and
you create a separate branch for your changes.

Aha! You’re into branches now. What is a branch? For now,
just think of it as a copy you’ve made of your code. I’ll get
into this in a minute.

You create a branch and you make your changes there. And
then you “merge” your changes into “main” via a pull request.

Gosh that’s a mouthful. Before I get any more confused,
let’s see this in action.

First, in my local repo, let’s create a branch.

git branch newchange

This command has now effectively given you a copy of
“main”. Don’t worry, it isn’t literally a full copy. Git is smart
enough to abstract the details only for changes. For you, it
feels like a copy. Before you can start working on this copy,
you need to check out this branch, as follows:

git checkout newchange

I could have also abbreviated the above two commands into
one, effectively saying “create a branch and check it out”
like this:

git checkout -b newchange

Alternatively, I could create a branch in the server-side repo
and pull the changes using Git pull etc. That would be very use-
ful if your coworkers have created a branch that they’ve pushed
to the server and you wish to work on it collaboratively.

At any point, you can run “git branch” to verify which
branch you’re on and which branches are available locally.

Now that you’ve checked out the newchange branch, let’s make
some changes. Modify the first file by appending some text.

echo "more changes" >> readme.md

And create a new file.

echo "a new file" > secondfile.md

Now, you should have to changes ready to go, as can be seen
in Figure 8.

Now let’s stage these changes, commit them locally, and
then push them into the cloud.

First, stage:

git add .

Then commit:

git commit -m "My second commit"

Go ahead and execute the Git remote add origin command,
as shown in the last snippet.

Next, you need to set the upstream branch. I haven’t yet
had a chance to talk about branches, but since you have
only branch “main”, that will be your upstream branch. The
idea is that an upstream branch is what’s tracked on the re-
mote repository by your local branch. My local “main” needs
to mirror the server side “main”, so my “main” branch is a
great choice for an upstream branch. To set the upstream,
and to push my “main” into “origin”, I use the following
command:

git push -u origin main

Now visit the GitHub repo in your browser and your code
should be visible, as shown in Figure 7.

Modify Code
Okay, at this point, you should have a server-side repo at
https://github.com/maliksahil/gitlearn and a locally cloned
repo. Assuming that you don’t have a locally cloned repo,
you can use “git clone” to clone the repo from the server
location. You know you can pass the --help parameter to
any command, right? Try doing a git clone yourself.

Now I wish to make changes. A typical software project
contains a number of files. You also go through many re-

Figure 8: Two changes are ready to go.

Figure 9: I have no upstream branch.

Figure 10: I have branches.

Figure 11: Merging branches

SPONSORED SIDEBAR:

Ready to Modernize a
Legacy App?

Need FREE advice on
migrating yesterday’s
legacy applications
to today’s modern
platforms? Get answers
by taking advantage
of CODE Consulting’s
years of experience by
contacting us today
to schedule your free hour
of CODE consulting call.
No strings. No commitment.
Nothing to buy.
For more information,
visit www.codemag.com/
consulting or email us at
info@codemag.com.

13codemag.com The Basics of Git

Look at you, issuing Git commands like a pro. I’m so proud.
Now let’s push it to the cloud.

git push

The last command didn’t work. You should see an error, as
shown in Figure 9.

This makes sense if you think about it. I never told my Git
repo which upstream location “newchange” should be sent
to. And it gives me a helpful command to fix it. So go ahead
and run that command, which then sets the upstream loca-
tion and pushes my changes.

git push -u origin newchange

Oh yes: -u is a shorthand for --set-upstream

This is where the fun starts. Observe Figure 10.

See, in Figure 10, I effectively now have multiple versions
of my code base. Isn’t this great? I can now revert back to a
production version in “main” while switching to a dev ver-
sion in “newchange”.

This brings up a question. How do I get my changes from
“newchange” into “main”? There are two ways.

First, you can do a pull request. This means, you go to the
Git repo and issue a PR (short for pull request). This is you
asking, hey, I would like to merge these changes into main,
and usually you’d also have some reviewer on the PR. The
idea is that you don’t have permissions to merge into main,
or, as a policy, you wish to have an extra set of eyes look at
your code. It’s possible to set these policies on your repo,
and most real-world projects have such policies.

The other mechanism is that you can merge from new-
change into main and then push main to an upstream lo-
cation. This is where, typically, you have both branches
under your control. For instance, perhaps you have cre-
ated a branch of a branch, but both branches are your
dev work.

git merge newchange main

This workflow can be seen in Figure 11.

You can push this and your remote repo will reflect these
changes. But I have other plans. Let’s use the PR method.
Visit your GitHub repo, and you should now see a nice help-
ful message, as shown in Figure 12.

Use that “Compare & pull request” button to create a PR. This
gives you a nice overview of the changes, the comments, files
committed, approvers, labels, etc., which is great for a devel-
opment workflow. You can also set up bots to do some basic
review for you, and all sorts of other automation involving
humans. When you’re done, you can merge the pull request,
and delete the branch, as shown in Figure 13.

Now you’ve merged the PR, deleted the branch, and your
changes are in main. You can feel free to also delete your
local “newchange” branch as follows:

git branch -d newchange

Figure 12: Creating a PR

Figure 13: Merge a PR

Move, Rename, or Delete Files
I’ll keep this section short because Git automates this nice-
ly. And to save time and ink, I’ll do everything in the “main”
branch. Go ahead and perform the following changes to
your repo.

mkdir afolder
mv secondfile.md afolder
mv readme.md dontreadme.md

You created a new folder and moved the secondfile.md into
that folder, effectively deleting it from the root folder and
adding a new file in afolder. Then you renamed readme.md
to dontreadme.md.

Now, running a Git status basically tells me everything that
I just did. You can see this in Figure 14.

And now I can stage, commit, and push my changes as follows.

git add .
git commit -m "More changes"
git push

14 codemag.com

project. Your dev tools or development environment need these
files, but they’re downloaded or generated on the fly. Some-
times they’re even specific to the operating system you’re work-
ing on. Or perhaps you have configuration files with secrets or
keys specific to the developer’s environment. There are many
situations where you want certain files to not be checked in.

Let’s understand how you can teach Git to ignore files.

If you’ve been following this article, you should have a Git
repo that looks like Figure 15.

What I wish to do now is instruct Git to ignore the “afolder”
contents going forward. Also, I’m going to create another file
in the root of my repo. Let’s call it env.txt, and I don‘t want to
check it in. To save time, I’ll do stuff in the main branch, al-
though in real-world scenarios, you want to branch and merge.

First, let’s create the env.txt file as follows:

echo 'someconfig' > env.txt

To instruct Git to ignore the env.txt and afolder folder, I’ll
create a new file in the root of my repo called “.gitignore”.
You can also choose to create a .gitignore file per folder
and have those settings apply only to that folder and its
children.

In my .gitignore file, I choose to put the following text:

env.txt
afolder/

At this point, I’m going to add, commit, and push. Now let’s
visit my repository on github.com and examine what it looks
like. This can be seen in Figure 16.

Are you surprised by what you see in Figure 16? I do see
that env.txt was ignored. But why is afolder still there? It’s

You just made some amazing changes and pushed them to
the remote repo. Best of all, you did so using the concepts
you have learned so far. I encourage you to repeat these
changes using a branch and do a pull request to solidify
your knowledge.

Ignore Files
In any development project, you’ll have files that you don’t
wish to check-in as a part of your source code. These may be
node_modules in a node project, or bin, obj folders in a .NET

Figure 15: My Git repo so far

Figure 16: My Git repo with .gitignore

Figure 17: The working tree remains clean even after new files are added in ignored folders.

Figure 18: Making changes in an already tracked file in an ignored folder

Figure 14: The Git status for bunch of stuff I just did.

The Basics of Git

15codemag.com

Git to ignore afolder and env.txt, but afolder\secondfile.md
is already being tracked. The afolder\anewfile.md was cre-
ated after the gitignore file was created, so it’s not being
tracked.

Next, I ask Git to remove files from the index recursively us-
ing the “-r” option, but using the --cached option, I instruct
Git to remove files only from the index but leave the working
tree alone. Long story short, this means: Leave my local
files alone but fix the Git repo.

Running this command informs me of the changes Git made.
It didn’t remove the files from my disk though. To fully un-
derstand the changes, I then run a Git status command,
which tells me that it deleted .gitignore, but not really—it
now shows .gitignore as untracked. This means that now
when I do a “git add .”, those untracked files will now be
tracked. But you know what won’t be tracked? The afolder/
secondfile.md won’t be tracked going forward.

This achieves my goal of telling Git, hey, really, stop tracking
this entire folder, just like my .gitignore instructs you to do.

To put things simply, simply adding a .gitignore won’t cause
Git to stop tracking files that are already being tracked

still there because you’re ignoring it going forward. This
means that now if you were to put another file under afolder
and try to check it in, that new file won’t be checked in.

You can see this in action in Figure 17. Notice that the work-
ing tree remains clean, no matter what I do in afolder. Or is it?

Let’s append some text in the afolder/secondfile.md file—
remember that the secondfile.md file is checked into Git
already. This can be seen in Figure 18.

Interestingly, now my working folder is no longer clean—
even though I made the change in a file that resides in a
folder that I’ve instructed to be ignored. This is because the
file “secondfile.md” was already being tracked.

Why is this useful? It’s useful for configuration settings,
such as web.config or .env files. It’s quite normal for de-
velopers to check-in an .env.sample file instructing other
developers who clone the repository to follow the structure
of .env.sample when they create their own .env files.

This .env file is instructed to be ignored from the get go, but
the .env.sample file is not. This means that I can continue
to maintain .env.sample and keep my instructions updated,
while the .env remains safely out of source control.

But this behavior can also be problematic sometimes. Let’s
say that you forgot to include an auto-generated folder
such as node_modules in the first check-in. How do you
now instruct Git to not track this folder going forward, even
though you checked it in once?

First let’s reset my repo to what’s checked into remote.

git reset --hard && git pull

This command discards all of my changes and refreshes my
local working copy from the remote location, just to make
sure I have my teammates’ changes on my disk.

Now I wish to instruct Git to stop tracking “afolder” but
leave my working copy of afolder alone. This entire sequence
can be seen in Figure 19.

There’s a lot going on in Figure 19, so let’s break it down
step by step.

First, using the tree command, I show the current structure
of my working tree. Note that my gitignore has instructed Figure 19: Remove files you wish not to track

Figure 20: Git repo with my cleaned-up index

The Basics of Git

16 codemag.com

(mostly ignored by gitignore). What I wish to do is add
some text to dontreadme.md and create a new file called
readme.md.

echo 'even more stuff' >> dontreadme.md
echo 'brand new file' > readme.md

You can now run Git status to see what has changed. Here’s
a trick. The output of Git status can be quite wordy. If you
want to see a quick shorthand output, which may be useful
when you have a lot of files, use the following command:

git status -s

The output of this command looks like this:

M dontreadme.md
?? readme.md

This output tells you that the dontreadme.md file has been
modified. But the readme.md file is unstaged.

Now, go ahead and stage dontreadme.md.

git add dontreadme.md

Run a Git status -s again. The output in text remains the
same, but notice closely that the “M” by dontreadme.md has
changed from red to green.

Now append some more text to dontreadme.md. Don’t stage
this newly appended content and run Git status -s again. This
time you’ll see that dontreadme.md status now says “MM”, one
M is green, and the other is red. This can be seen in Figure 22.

So now you have some content in remote, some content
staged, and some in working copy, and all this content is
slightly different from each other.

How do you get ahead of the differences between these
three? The magic command is:

git diff

The output of this command can be seen in Listing 1. Let’s
be honest: This output is quite cryptic. Let’s try to under-
stand what this output means. This command compares your
working copy to staged changes.

•	 The a/ and b/ are directories—not real directories, but
a way to show you that a/ is index, and b/ is the work-
ing directory.

but match the .gitignore spec. This is by design. To actu-
ally untrack files, you also need to remove them from the
index.

Now, go ahead and do a add, commit, and push. Now your
Git repo should look like Figure 20.

You can imagine that “afolder” could be something like
node_modules, or something that you actually wanted to
get rid of.

Diff
When you’re working on a software project, you’re editing
files. This is your source code, and you need plenty of things
to help you keep control of what’s being committed. You’ve
already seen a Git command called Git status that lets you
do this at file level. But what about changes inside a file?
Perhaps you want a good way to compare two versions of a
file and get a clear idea of what changes will be made if you
push your changes.

Let’s understand this with an example. The current state of
my Git repo is shown in Figure 21.

As can be seen in Figure 21, I have one file in the root
called “dontreadme.md”, and a few other files and folders

diff --git a/dontreadme.md b/dontreadme.md
index b84a4f4..d41a9fb 100644
--- a/dontreadme.md
+++ b/dontreadme.md
@@ -1,3 +1,4 @@
 first file
 more changes
 even more stuff
+so much stuff

Listing 1: Output of git diff

Figure 21: My Git repo’s starting point

Figure 22: Git status -s.

The Basics of Git

17codemag.com

Summary
Git is an incredibly important skill. And let’s be honest:
There’s a learning curve here. When I started writing this
article, I thought I’d cover a bunch of interesting stuff that
some developers consider advanced, such as merging, fork-
ing, concurrent developers working, and resolving merge
conflicts. Those are skills that you’ll need and use daily in
a typical developer’s workday. But as I started writing this
article, I realized how much knowledge and how many nu-
ances I take for granted, and before I knew it, this article
started getting longer than I had anticipated.

Even to cover the basics of Git and tie it to practical real-
world situations, there’s an unsaid skill, assumed knowl-
edge, that can be frustrating to discover.

I’m really curious to know: Do you consider yourself to be a
seasoned developer? Do you use Git regularly? Even in these
ultra-basic commands around Git usage, did you discover
anything new? What complex Git situations would you like
to see broken down in future articles? Do let me know.

git commit -m “That’s a wrap” && git push.

•	 The IDs you see after that (b84a4f4) are BLOB IDs of
the files mentioned.

•	 The 100644 you see is “mode bits”, telling you that
this isn’t an executable file or a symlink; it’s just a
text file.

•	 The ---a/ +++b/ you see on the next line is interest-
ing. The minus signs show lines in the a/ version but
they are missing from the b/ version. And the plus
signs show added lines in b/.

•	 The next line starting with @@ is also interesting.
The changes are summarized as chunks, and here you
have one chunk. This @@ line is the header of this
chunk. It’s telling you that starting at the first line,
you have three files from the a/. And starting at line
1, you have four lines extracted.

It tries to color code it, but the color coding can frequently
get messed up over ssh sessions or your local settings.

If you want to compare staged with remote, you simply use
this command:

git diff --staged

Phew! This works, but it’s tedious. Is there a better way?

Use VSCode as a Diffing Tool
In the real world, you use Git diffing tools. You can use any
tool that supports diffing—cross-platform tools such as
KDiff3, P4Merge, or, for Windows, you can use WinMerge. Per-
sonally, I prefer to use VSCode—it’s a pretty nice diffing tool.

Most modern tools support this out of the box. You simply
open a Git repo in VSCode and VSCode starts leveraging the
output of Git behind the scenes to give you a visual Git ex-
perience. You can completely integrate diffing right inside
of VSCode. Here is how.

First, instruct VSCode to act as the diffing tool for Git. To do
so, edit your gitconfig file:

git config --global -e

Once your .gitconfig opens in your configured editor, add
the following lines at the bottom of it:

[diff]
 tool = vscode
[difftool "vscode"]
 cmd = "code --wait --diff $LOCAL $REMOTE"

Now, instead of saying “git diff”, run “git difftool”. It should
show you an output like this:

Viewing (1/1): 'dontreadme.md'
Launch 'vscode' [Y/n]?

If you hit “Y” on that prompt, it opens VSCode, which then takes
care of showing you the diff. This can be seen in Figure 23.

You can also try “git difftool --staged” to view the staged diff.

This is a more visual diff. Using VSCode is so much easier to
understand than viewing the ASCII wall that git diff threw
at me.

Figure 23: Here, I’m diffing in VSCode like a champ.

� Sahil Malik
�

The Basics of Git

18 codemag.com

ONLINE QUICK ID 2201031

Enhance Your MVC Applications Using JavaScript and jQuery: Part 3

Enhance Your MVC Applications
Using JavaScript and jQuery: Part 3
This article continues my series on how to enhance the user experience (UX) of your MVC applications, and how to make them
faster. In the first article, entitled Enhance Your MVC Applications Using JavaScript and jQuery: Part 1 (https://www.codemag.com/
Article/2109031/Enhance-Your-MVC-Applications-Using-JavaScript-and-jQuery-Part-1), and the second article, entitled Enhance

Your MVC Applications Using JavaScript and jQuery: Part 2
(https://www.codemag.com/Article/2111031/Enhance-Your-
MVC-Applications-Using-JavaScript-and-jQuery-Part-2), you
learned about the starting MVC application, which was cod-
ed using all server-side C#. You then added JavaScript and
jQuery to avoid post-backs and enhance the UX in various
ways. If you haven’t already read these articles, I highly rec-
ommend that you read them to learn about the application
you’re enhancing in this series of articles.

In this article, you’re going to build Web API calls that you
can call from the application to avoid post-backs. You’re go-
ing to add calls to add, update, and delete shopping cart
information. In addition, you’re going to learn to work with
dependent drop-down lists to also avoid post-backs. Finally,
you learn to use jQuery auto-complete instead of a drop-
down list to provide more flexibility to your user.

The Problem: Adding to Shopping
Cart Requires a Post-Back
On the Shopping page, each time you click on an Add to Cart
button (Figure 1), a post-back occurs and the entire page
is refreshed. This takes time and causes a flash on the page
that can be annoying to the users of your site. In addition,
it takes time to perform this post-back because all the data
must be retrieved from the database server, the entire page
needs to be rebuilt on the server side, and then the browser
must redraw the entire page. All of this leads to a poor user
experience.

The Solution: Create a Web API Call
The first thing to do is to create a new Web API control-
ler to handle the calls for the shopping cart functionality.
Right mouse-click on the PaulsAutoParts project and create
a new folder named ControllersApi. Right mouse-click on
the ControllersApi folder and add a new class named Shop-
pingApiController.cs. Remove the default code in the file
and add the code shown in Listing 1 to this new class file.

Add two attributes before this class definition to tell .NET that
this is a Web API controller and not an MVC page control-
ler. The [ApiController] attribute enables some features such
as attribute routing, automatic model validation, and a few
other API-specific behaviors. When using the [ApiController]
attribute, you must also add the [Route] attribute. The route
attribute adds the prefix “api” to the default “[controller]/
[action]” route used by your MVC page controllers. You can
choose whatever prefix you wish, but the “api” prefix is a
standard convention that most developers use.

In the constructor for this API controller, inject the AppSes-
sion, and the product and vehicle type repositories. Assign

the product and vehicle type repositories to the correspond-
ing private read-only fields defined in this class.

The AddToCart() method is what’s called from jQuery Ajax to
insert a product into the shopping cart that’s stored in the
Session object. This code is similar to the code written in
the MVC controller class ShoppingController.Add() method.
After adding the id passed in by Ajax, a status code of 200
is passed back from this Web API call to indicate that the
product was successfully added to the shopping cart. At this
point, you have everything you need on the back-end to add
a product to the shopping cart via an Ajax call.

Modify the Add to Cart Link
It’s now time to modify the client-side code to take advan-
tage of this new Web API method. You no longer want a
post-back to occur when you click on the Add to Cart link,
so you need to remove the asp- attributes and add code
to make an Ajax call. Open the Views\Shopping_Shop-
pingList.cshtml file and locate the Add to Cart <a> tag and
remove the asp-action=”Add” and the asp-route-id=”@
item.ProductId” attributes. Add id and data- attributes,
and an onclick event, as shown in the code snippet below.

Paul D. Sheriff
http://www.pdsa.com

Paul has been in the IT
industry over 33 years.
In that time, he has suc-
cessfully assisted hundreds
of companies to architect
software applications to
solve their toughest business
problems. Paul has been
a teacher and mentor
through various mediums
such as video courses,
blogs, articles, and speaking
engagements at user
groups and conferences
around the world.
Paul has 23 courses in the
www.pluralsight.com library
(http://www.pluralsight.
com/author/paul-sheriff)
on topics ranging from
JavaScript, Angular, MVC,
WPF, XML, jQuery, and
Bootstrap. Contact Paul
at psheriff@pdsa.com.

Figure 1: Adding an item to the shopping cart can be more
efficiently handled using Ajax.

https://www.codemag.com/Article/2109031/Enhance-Your-MVC-Applications-Using-JavaScript-and-jQuery-Part-1
https://www.codemag.com/Article/2111031/Enhance-Your-MVC-Applications-Using-JavaScript-and-jQuery-Part-2

19codemag.com Enhance Your MVC Applications Using JavaScript and jQuery: Part 3

Create the addToCart() Method
Write the addToCart() method in the pageController closure
to call the new AddToCart() method you added in the Shop-
pingApiController class. Because you’re performing a post,
you may use either the jQuery $.ajax() or $.post() methods.
I chose to use the $.post() method in the code shown in fol-
lowing snippet.

function addToCart(id) {
 let settings = {
 url: "/api/ShoppingApi/AddToCart",
 contentType: "application/json",
 data: JSON.stringify(id)
 }
 $.post(settings)

<a class="btn btn-info"
 id="updateCart"
 data-isadding="true"
 onclick="pageController
 .modifyCart(@item.ProductId, this)">
 Add to Cart

When you post back to the server, a variable in the view
model class is set on each product to either display the Add
to Cart link or the Remove from Cart link. When using client-
side code, you’re going to toggle the same link to either
perform the add or the remove. Use the data-isadding at-
tribute on the anchor tag to determine whether you’re do-
ing an add or a remove.

Add Code to Page Closure
The onclick event in the anchor tag calls a method on the
pageController called modifyCart(). You pass to this cart
the current product ID and a reference to the anchor tag
itself. Add this modifyCart() method by opening the Views\
Shopping\Index.cshtml file and adding the three private
methods (Listing 2) to the pageController closure: modi-
fyCart(), addToCart(), and removeFromCart(). The modify-
Cart() method is the one that’s made public; the other two
are called by the modifyCart() method.

The modifyCart() method checks the value in the data-isad-
ding attribute to see if it’s true or false. If it’s true, call the
addToCart() method, change the link text to “Remove from
Cart”, set the data-isadding=”false”, remove the class
“btn-info”, and add the class “btn-danger”. If false, call the
removeFromCart() method and change the attributes on the
link to the opposite of what you just set. Modify the return
object to expose the modifyCart() method.

return {
 "setSearchArea": setSearchArea,
 "modifyCart": modifyCart
}

using Microsoft.AspNetCore.Http;
using Microsoft.AspNetCore.Mvc;
using PaulsAutoParts.AppClasses;
using PaulsAutoParts.Common;
using PaulsAutoParts.EntityLayer;
using PaulsAutoParts.ViewModelLayer;

namespace PaulsAutoParts.ControllersApi
{
 [ApiController]
 [Route("api/[controller]/[action]")]
 public class ShoppingApiController : AppController
 {
 #region Constructor
 public ShoppingApiController(AppSession session,
 IRepository<Product, ProductSearch> repo,
 IRepository<VehicleType,
 VehicleTypeSearch> vrepo) : base(session)
 {
 _repo = repo;
 _vehicleRepo = vrepo;
 }
 #endregion

 #region Private Fields
 private readonly IRepository<Product, ProductSearch> _repo;
 private readonly IRepository<VehicleType,

 VehicleTypeSearch> _vehicleRepo;
 #endregion

 #region AddToCart Method
 [HttpPost(Name = "AddToCart")]
 public IActionResult AddToCart([FromBody]int id)
 {
 // Set Cart from Session
 ShoppingViewModel vm = new(_repo, _vehicleRepo,
 UserSession.Cart);

 // Set "Common" View Model Properties from Session
 base.SetViewModelFromSession(vm, UserSession);

 // Add item to cart
 vm.AddToCart(id, UserSession.CustomerId.Value);

 // Set cart into session
 UserSession.Cart = vm.Cart;

 return StatusCode(StatusCodes.Status200OK, true);
 }
 #endregion
 }
}

Listing 1: Create a new Web API controller with methods to eliminate post-backs

function modifyCart(id, ctl) {
 // Are we adding or removing?
 if (Boolean($(ctl).data("isadding"))) {
 // Add product to cart
 addToCart(id);
 // Change the button
 $(ctl).text("Remove from Cart");
 $(ctl).data("isadding", false);
 $(ctl).removeClass("btn-info")
 .addClass("btn-danger");
 }
 else {
 // Remove product from cart
 removeFromCart(id);
 // Change the button
 $(ctl).text("Add to Cart");
 $(ctl).data("isadding", true);
 $(ctl).removeClass("btn-danger")
 .addClass("btn-info");
 }
}

function addToCart(id) {
}

function removeFromCart(id) {
}

Listing 2: Add three methods in the pageController closure to modify the shopping cart

20 codemag.com

Remove from Cart immediately. Click on the “0 Items in
Cart” link in the menu bar and you should see an item in the
cart. Don’t worry about the “0 Items in Cart” link; you’ll fix
that a little later in this article.

The Problem: Delete from Shopping
Cart Requires a Post-Back
Now that you’ve added a product to the shopping cart using
Ajax, it would be good to also remove an item from the cart
using Ajax. The link on the product you just added to the
cart should now be displaying Remove from Cart (Figure 2).
This was set via the JavaScript you wrote in the addToCart()
method. The data-isadding attribute has been set to a false
value, so when you click on the link again, the code in the
modifyCart() method calls the removeFromCart() method.

The Solution: Write Web API Method to Delete
from the Shopping Cart
Open the ControllersApi\ShoppingApiController.cs file and
add a new method named RemoveFromCart(), as shown in
Listing 3. This method is similar to the Remove() method
contained in the ShoppingController MVC class. A product ID
is passed into this method and the RemoveFromCart() meth-
od is called on the view model to remove this product from
the shopping cart help in the Session object. A status code
of 200 is returned from this method to indicate that the
product was successfully removed from the shopping cart.

Modify the Remove from Cart Link
You no longer want a post-back to occur when you click
on the Remove from Cart link, so you need to remove the
asp- attributes and add code to make an Ajax call. Open
the Views\Shopping_ShoppingList.cshtml file and lo-
cate the Remove from Cart <a> tag and remove the asp-
action=”Remove” and the asp-route-id=”@item.ProductId”
attributes. Add an id and data- attributes, and an onclick
event, as shown in the code below.

<a class="btn btn-danger"
 id="updateCart"
 data-isadding="false"
 onclick="pageController
 .modifyCart(@item.ProductId, this)">
 Remove from Cart

Notice that you’re setting the id attribute to the same value as
on the Add to Cart button. As you know, you can’t have two HTML
elements with the id attribute set to the same value, because
these two buttons are wrapped within an @if() statement, and
only one is written by the server into the DOM at a time.

Add Code to pageController
Open the Views\Shopping\Index.cshtml file and add code
to the removeFromCart() method. Call the $.ajax() method
by setting the url property to the location of the Remove-
FromCart() method you added, and set the type property to
“DELETE”. Pass the id of the product to delete on the URL
line, as shown in the following code snippet.

function removeFromCart(id) {
 $.ajax({
 url: "/api/ShoppingApi/RemoveFromCart/" + id,
 type: "DELETE"
 })

 .done(function (data) {
 console.log(
 "Product Added to Shopping Cart");
 })
 .fail(function (error) {
 console.error(error);
 });
}

Try It Out
Run the application and click on the Shop menu. Perform
a search to display products on the Shopping page. Click
on one of the Add to Cart links to add a product to the
shopping cart. You should notice that the link changes to

Figure 2: Removing items from a cart can be more
efficiently handled using Ajax.

[HttpDelete("{id}", Name = "RemoveFromCart")]
public IActionResult RemoveFromCart(int id)
{
 // Set Cart from Session
 ShoppingViewModel vm = new(_repo,
 _vehicleRepo, UserSession.Cart);

 // Set "Common" View Model Properties
 // from Session
 base.SetViewModelFromSession(vm,
 UserSession);

 // Remove item to cart
 vm.RemoveFromCart(vm.Cart, id,
 UserSession.CustomerId.Value);

 // Set cart into session
 UserSession.Cart = vm.Cart;

 return StatusCode(StatusCodes.Status200OK,
 true);
}

Listing 3: The RemoveFromCart() method deletes a product from the shopping cart

Enhance Your MVC Applications Using JavaScript and jQuery: Part 3

21codemag.com

Getting the Sample Code

You can download the sample
code for this article by visiting
www.CODEMag.com under
the issue and article, or by
visiting www.pdsa.com/
downloads. Select “Articles”
from the Category drop-
down. Then select “Enhance
your MVC Applications using
JavaScript and jQuery: Part 3”
from the Item drop-down.

return {
 "pleaseWait": pleaseWait,
 "disableAllClicks": disableAllClicks,
 "setSearchValues": setSearchValues,
 "isSearchFilledIn": isSearchFilledIn,
 "setSearchArea": setSearchArea,
 "modifyItemsInCartText": modifyItemsInCartText
}

Call this function after making the Ajax call to either add or
remove an item from the cart. Open the Views\Shopping\
Index.cshtml file and locate the done() method in the ad-
dToCart() method. Add the line shown just before the con-
sole.log() statement.

$.post(settings)
 .done(function (data) {
 mainController.modifyItemsInCartText(true);
 console.log("Product Added to Shopping Cart");
 })
// REST OF THE CODE HERE

Locate the done() method in the removeFromCart() method
and add the line of code just before the console.log() state-
ment, as shown in the following code snippet.

$.ajax({
 url: "/api/ShoppingApi/RemoveFromCart/" + id,
 type: "DELETE"
})
 .done(function (data) {
 mainController.modifyItemsInCartText(false);
 console.log("Product Removed from Shopping Cart");
 })
// REST OF THE CODE HERE

Try It Out
Run the application and click on the Shop menu. Perform
a search to display products on the Shopping page. Click
on one of the Add to Cart links to add a product to the
shopping cart and notice the link changes to Remove from
Cart immediately. You should also see the “Items in Cart”
link increment. Click on the Remove from Cart link and you
should see the “Items in Cart” link decrement.

 .done(function (data) {
 console.log(
 "Product Removed from Shopping Cart");
 })
 .fail(function (error) {
 console.error(error);
 });
}

Try It Out
Run the application and click on the Shop menu. Perform
a search to display products on the Shopping page. Click
on one of the Add to Cart links to add a product to the
shopping cart. You should notice that the link changes to
Remove from Cart immediately. Click on the “0 Items in
Cart” link in the menu bar and you should see an item in the
cart. Click on the back button on your browser and click the
Remove from Cart link on the item you just added. Click on
the “0 Items in Cart” link and you should see that there are
no longer any items in the shopping cart.

The Problem: The “n Items in Cart”
Link isn’t Updated
After modifying the code in the previous section to add and
remove items from the shopping cart using Ajax, you no-
ticed that the “0 Items in Cart” link in the menu bar isn’t up-
dating with the current number of items in the cart. That’s
because this link is generated by data from the server-side.
Because you’re bypassing server-side processing with Ajax
calls, you need to update this link yourself.

The Solution: Add Client-Side Code to Update Link
Open the Views\Shared_Layout.cshtml file and locate the
“Items in Cart” link. Add an id attribute to the <a> tag and
assign it the value of “itemsInCart”, as shown in the follow-
ing code snippet.

<a id="itemsInCart"
 class="text-light"
 asp-action="Index"
 asp-controller="Cart">
 @ViewData["ItemsInCart"] Items in Cart

Create a new method to increment or decrement the “Items
in Cart” link. Open the wwwroot\js\site.js file and add a
new method named modifyItemsInCartText() to the main-
Controller closure, as shown in Listing 4. An argument is
passed to this method to specify whether you’re adding
or removing an item from the shopping cart. This tells the
method to either increment the number or decrement the
number of items in the text displayed on the menu.

The modifyItemsInCartText() method extracts the text por-
tion from the <a> tag holding the “0 Items in Cart”. It calcu-
lates the position of the first space in the text, which allows
you to parse the numeric portion, turn that into an integer,
and place it into the variable named count. If the value
passed into the isAdding parameter is true, then count
is incremented by one. If the value passed is false, then
count is decremented by one. The new numeric value is then
placed where the old numeric value was in the string and
this new string is inserted back into the <a> tag. Expose the
modifyItemsInCartText()method from the return object on
the mainController closure, as shown in the following code.

function modifyItemsInCartText(isAdding) {
 // Get text from <a> tag
 let value = $("#itemsInCart").text();
 let count = 0;
 let pos = 0;

 // Find the space in the text
 pos = value.indexOf(" ");
 // Get the total # of items
 count = parseInt(value.substring(0, pos));

 // Increment or Decrement the total # of items
 if (isAdding) {
 count++;
 }
 else {
 count--;
 }

 // Create the text with the new count
 value = count.toString() + " " + value.substring(pos);
 // Put text back into the cart
 $("#itemsInCart").text(value);
}

Listing 4: Add a modifyItemsInCartText() method to the mainController closure

Enhance Your MVC Applications Using JavaScript and jQuery: Part 3

www.pdsa.com/downloads

22 codemag.com

method on the ShoppingViewModel class is called to set the
Makes property with the collection of vehicle makes that are
valid for that year. The set of vehicle makes is returned from
this Web API method.

Next, add another new method named GetModels() to the
ShoppingApiController class to retrieve all models for a spe-
cific year and make as shown in Listing 6. In this method,
both a year and a vehicle make are passed in. The GetMod-
els() method on the ShoppingViewModel class is called to
populate the Models property with all vehicle models for
that specific year and make. The collection of vehicle models
is returned from this Web API method.

Modify Shopping Cart Page
It’s now time to add a couple of methods to your shopping
cart page to call these new Web API methods you added
to the ShoppingApiController class. Open the Views\Shop-
ping\Index.cshtml file and add a method to the pageCon-
troller named getMakes(), as shown in Listing 7.

The getMakes() method retrieves the year selected by the
user. It then clears the drop-down that holds all vehicle
makes and the one that holds all vehicle models. Next, a
call is made to the GetMakes() Web API method using the
$.get() shorthand method. If the call is successful, use the
jQuery each() method on the data returned to iterate over
the collection of vehicle makes returned. For each make,
build an <option> element with the vehicle make within the
<option> and append that to the drop-down.

Add another method to the pageController named getMod-
els(), as shown in Listing 8. The getModels() method re-
trieves both the year and make selected by the user. Clear
the models drop-down list in preparation for loading the
new list. Call the GetModels() method using the $.get()
shorthand method. If the call is successful, use the jQuery

The Problem: Dependent Drop-
Downs Requires Multiple Post-Backs
A common user interface problem to solve is that when you
choose an item from a drop-down, you then need a drop-down
immediately following to be filled with information specific to
that selected item. For example, run the application and se-
lect the Shop menu to get to the Shopping page. In the left-
hand search area, select a Vehicle Year from the drop-down
list (Figure 3). Notice that a post-back occurs and now a list
of Vehicle Makes are filled into the corresponding drop-down.
Once you choose a make, another post-back occurs and a list
of vehicle models is filled into the last drop-down. Notice the
flashing of the page that occurs each time you change the
year or make caused by the post-back.

The Solution: Connect All Drop-Downs to Web API Services
To eliminate this flashing, create Web API calls to return
makes and models. After selecting a year from the Vehicle
Year drop-down, an Ajax call is made to retrieve all makes
for that year in a JSON format. Use jQuery to build a new
set of <option> objects for the Vehicle Make drop-down. The
same process can be done for the Vehicle Model drop-down
as well.

Open the ControllersApi\ShoppingApiController.cs file and
add a new method named GetMakes() to get all makes of ve-
hicles for a specific year, as shown in Listing 5. This method
accepts the year of the vehicle to search for. The GetMakes()

Figure 3: Multiple post-backs occur when you select a
different value from any of these drop-downs.

[HttpGet("{year}", Name = "GetMakes")]
public IActionResult GetMakes(int year)
{
 IActionResult ret;

 // Create view model
 ShoppingViewModel vm = new(_repo,
 _vehicleRepo, UserSession.Cart);

 // Get vehicle makes for the year
 vm.GetMakes(year);

 // Return all Makes
 ret = StatusCode(StatusCodes.Status200OK,
 vm.Makes);

 return ret;
}

Listing 5: The GetMakes() method returns all vehicles makes for a specific year

[HttpGet("{year}/{make}", Name = "GetModels")]
public IActionResult GetModels(int year,
 string make)
{
 IActionResult ret;

 // Create view model
 ShoppingViewModel vm = new(_repo,
 _vehicleRepo, UserSession.Cart);

 // Get vehicle models for the year/make
 vm.GetModels(year, make);

 // Return all Models
 ret = StatusCode(StatusCodes.Status200OK,
 vm.Models);

 return ret;
}

Listing 6: The GetModels() method returns all vehicle models for a specific year and model

Enhance Your MVC Applications Using JavaScript and jQuery: Part 3

23codemag.com

 asp-items="@(new SelectList(Model.Makes))">
</select>

Try It Out
Run the application and click on the Shop menu. Expand the
“Search by Year/Make/Model” search area and select a year
from the drop-down. The vehicle makes are now filled into
the drop-down, but the page didn’t flash because there’s
no longer a post-back. If you select a vehicle make from the
drop-down, you should see the vehicle models filled in, but
again, the page didn’t flash because there was no post-back.

The Problem: Allow a User to
Either Select an Existing Category
or Add a New One
Click on the Admin > Products menu, then click the Add
button to allow you to enter a new product (Figure 4). No-
tice that the Category field is a text box. This is fine if you
want to add a new Category, but what if you want the user

each() method on the data returned to iterate over the col-
lection of vehicle models returned. For each model, build an
<option> element with the vehicle model within the <op-
tion> and append that to the drop-down.

Because you added two new private methods to the page-
Controller closure, you need to expose these two methods
by modifying the return object, as shown in the following
code snippet.

return {
 "setSearchArea": setSearchArea,
 "modifyCart": modifyCart,
 "getMakes": getMakes,
 "getModels": getModels
}

Now that you have the new methods written and exposed
from your pageController closure, hook them up to the appro-
priate onchange events of the drop-downs for the year and
make within the search area on the page. Locate the <select>
element for the SearchEntity.Year property and modify the
onchange event to look like the following code snippet.

<select class="form-control"
 onchange="pageController.getMakes(this);"
 asp-for="SearchEntity.Year"
 asp-items="@(new SelectList(Model.Years))">
</select>

Next, locate the <select> element for the SearchEntity.Make
property and modify the onchange event to look like the
following code snippet.

<select class="form-control"
 onchange="pageController.getModels(this);"
 asp-for="SearchEntity.Make"

function getMakes(ctl) {
 // Get year selected
 let year = $(ctl).val();

 // Search for element just one time
 let elem = $("#SearchEntity_Make");

 // Clear makes drop-down
 elem.empty();
 // Clear models drop-down
 $("#SearchEntity_Model").empty();

 $.get("/api/ShoppingApi/GetMakes/" +
 year, function (data) {
 // Load the makes into drop-down
 $(data).each(function () {
 elem.append(`<option>${this}</option>`);
 });
 })
 .fail(function (error) {
 console.error(error);
 });
}

Listing 7: The getMakes() method retrieves vehicle makes and builds a drop-down

function getModels(ctl) {
 // Get currently selected year
 let year = $("#SearchEntity_Year").val();
 // Get model selected
 let model = $(ctl).val();

 // Search for element just one time
 let elem = $("#SearchEntity_Model");

 // Clear models drop-down
 elem.empty();

 $.get("/api/ShoppingApi/GetModels/" +
 year + "/" + model, function (data) {
 // Load the makes into drop-down
 $(data).each(function () {
 elem.append(`<option>${this}</option>`);
 });
 })
 .fail(function (error) {
 console.error(error);
 });
}

Listing 8: The getModels() method retrieves vehicle models and builds a drop-down

Figure 4: jQuery has validation capabilities as well as an
auto-complete that can make your UI more responsive and
avoid post-backs

Enhance Your MVC Applications Using JavaScript and jQuery: Part 3

24 codemag.com

Modify the Shopping View Model Class
Instead of calling the repository methods directly from
controller classes, it’s best to let your view model class call
these methods. Open the ShoppingViewModel.cs file in the
PaulsAutoParts.ViewModeLayer project. Add a new method
to this class named SearchCategories() that makes the call
to the repository class method you just created.

public List<string> SearchCategories(
 string searchValue)
{
 return ((ProductRepository)Repository)
 .SearchCategories(searchValue);
}

Add New Web API to Controller
It’s now time to create the Web API method for you to call
via Ajax to search for the categories based on each charac-
ter the user types into the text box. Open the Controller-
sApi\ShoppingApiController.cs file and add a new method
named SearchCategories() to this controller class, as shown
in Listing 9. This method accepts the character(s) typed
into the Category text box; if it’s blank, it returns all catego-
ries, and otherwise passes the search value to the Search-
Categories() method you just created.

Add jQuery UI Code to Product Page
Open the Views\Product\ProductIndex.cshtml file and at
the top of the page, just below the setting of the page title,
add a new section to include the jquery-ui.css file. This is
needed for styling the auto-complete drop-down. Please
note that for the limits of printing this article, I had to
break the href attribute on to two lines. When you put this
into your cshtml file, be sure to put it all on one line.

@section HeadStyles {
 <link rel="stylesheet"
 href="//code.jquery.com/ui/1.12.1
 /themes/base/jquery-ui.css">
}

Now go to the bottom of the file and in the @section
Scripts and just before your opening <script> tag, add the
following <script> tag to include the jQuery UI JavaScript
file. Please note that for printing this article, I had to break
the src attribute into two lines. When you put this into your
cshtml file, be sure to put it all on one line.

<script src="https://code.jquery.com/ui
 /1.12.1/jquery-ui.js">
</script>

Add a new method to the pageController closure named
categoryAutoComplete(). The categoryAutoComplete()
method is the publicly exposed method that’s called from
the $(document).ready() to hook up the auto-complete to
the category text box using the autocomplete() method.
Pass in an object to the autocomplete() method to set the
source property to a method named searchCategories(),
which is called to retrieve the category data to display in
the drop-down under the text box. The minLength prop-
erty is set to the minimum number of characters that must
be typed prior to making the first call to the searchCatego-
ries() method. I’ve set it to one, so the user must type in at
least one character in order to have the searchCategories()
method called.

to be able to select from the existing categories already as-
signed to products? You could switch this to a drop-down
list, but then the user could only select an existing category
and wouldn’t be able to add a new one on the fly. What
would be ideal is to use a text box, but also have a drop-
down component that shows them the existing categories
as they type in a few letters into the text box.

The Solution: Use jQuery UI Auto-Complete
To solve this problem, you need to bring in the jQuery UI
library and use the auto-complete functionality. Once added
to your project, connect a jQuery auto-complete to the Cat-
egory text box so after the user starts to type, a list of exist-
ing categories can be displayed directly under the text box.

Modify the Product Repository Class
First, you need to make some changes to the back-end to
support searching for categories by finding where a category
starts with the text the user types in. Open the Repository-
Classes\ProductRepository.cs file in the PaulsAutoParts.
DataLayer project and add a new method named Search-
Categories() to this class. This method takes the characters
entered by the user and queries the database to retrieve
only those categories that start with those characters, as
shown in the following code snippet.

public List<string> SearchCategories(
 string searchValue)
{
 return _DbContext.Products
 .Select(p => p.Category).Distinct()
 .Where(p => p.StartsWith(searchValue))
 .OrderBy(p => p).ToList();
}

This LINQ query roughly translates to the following SQL
query.

SELECT DISTINCT Category
FROM Product
WHERE Category LIKE 'C%'

[HttpGet("{searchValue}",
 Name = "SearchCategories")]
public IActionResult SearchCategories(
 string searchValue)
{
 IActionResult ret;

 ShoppingViewModel vm = new(_repo,
 _vehicleRepo, UserSession.Cart);

 if (string.IsNullOrEmpty(searchValue)) {
 // Get all product categories
 vm.GetCategories();

 // Return all categories
 ret = StatusCode(StatusCodes.Status200OK,
 vm.Categories);
 }
 else {
 // Search for categories
 ret = StatusCode(StatusCodes.Status200OK,
 vm.SearchCategories(searchValue));
 }

 return ret;
}

Listing 9: The SearchCategories() method performs a search for categories based on user input

Enhance Your MVC Applications Using JavaScript and jQuery: Part 3

25codemag.com

Vehicle Type maintenance page, when the user wants to add
a new vehicle, they should be able to either add a new make
or select from an existing one.

Add New Method to Vehicle Type Repository
Let’s start with modifying the code on the server to support
searching for vehicle makes. Open the RepositoryClasses\
VehicleTypeRepository.cs file and add a new method named
SearchMakes(), as shown in the following code snippet.

public List<string> SearchMakes(string make)
{
 return _DbContext.VehicleTypes
 .Select(v => v.Make).Distinct()
 .Where(v => v.StartsWith(make))
 .OrderBy(v => v).ToList();
}

This LINQ query roughly translates to the following SQL
query:

SELECT DISTINCT Make
FROM Lookup.VehicleType
WHERE Make LIKE 'C%'

Add a New Method to Vehicle Type View Model Class
Instead of calling the repository methods directly from
controller classes, it’s best to let your view model class call

function categoryAutoComplete() {
 // Hook up Category auto-complete
 $("#SelectedEntity_Category").autocomplete({
 source: searchCategories,
 minLength: 1
 });
}

Add the searchCategories() method that’s called from the
source property. This method must accept a request object
and a response callback function. This method uses the
$.get() method to make the Web API call to the SearchCat-
egories() method passing in the request.term property,
which is the text the user entered into the category text
box. If the call is successful, the data retrieved back from
the Ajax call is sent back via the response callback function.

function searchCategories(request, response) {
 $.get("/api/ShoppingApi/SearchCategories/" +
 request.term, function (data) {
 response(data);
 })
 .fail(function (error) {
 console.error(error);
 });
}

Modify the return object to expose the categoryAutoCom-
plete() method.

return {
 "setSearchValues": setSearchValues,
 "setSearchArea": mainController.setSearchArea,
 "isSearchFilledIn":
 mainController.isSearchFilledIn,
 "categoryAutoComplete": categoryAutoComplete
}

Finally, modify the $(document).ready() function to call the
pageController.categoryAutoComplete() method to hook
up jQuery UI to the Category text box.

$(document).ready(function () {
 // Setup the form submit
 mainController.formSubmit();

 // Hook up category auto-complete
 pageController.categoryAutoComplete();

 // Collapse search area or not?
 pageController.setSearchValues();
 // Initialize search area on this page
 pageController.setSearchArea();
});

Try It Out
Run the application and select the Admin > Products menu.
Click on the Add button and click into the Category text box.
Type the letter T in the Category input field and you should see
a drop-down appear of categories that start with the letter T.

Vehicle Type Page Needs Auto-
Complete for Vehicle Make Text Box
There’s another page in the Web application that can ben-
efit from the jQuery UI auto-complete functionality. On the

Advertisers Index

CODE Consulting
	 www.codemag.com/code� 7

CODE Consulting
	 www.codemag.com/onehourconsulting� 75

CODE Legacy
	 www.codemag.com/modernize� 76

DevIntersection
	 www.devintersection.com� 2

dtSearch
	 www.dtSearch.com� 11

LEAD Technologies
	 www.leadtools.com� 5

Live on Maui
	 www.live-on-maui.com� 38

ADVERTISERS INDEX

Advertising Sales:
Tammy Ferguson
832-717-4445 ext 26
tammy@codemag.com

This listing is provided as a courtesy
to our readers and advertisers.
The publisher assumes no responsibi-
lity for errors or omissions.

Enhance Your MVC Applications Using JavaScript and jQuery: Part 3

26 codemag.com

Add a new method to the pageController closure named
makesAutoComplete(). The makesAutoComplete() method
is the publicly exposed method that is called from the
$(document).ready() to hook up the jQuery auto-complete
to the vehicle makes text box, just like you did for hooking
up the category text box. Pass in an object to this method
that sets the source property to a method named search-
Make(), which is called to retrieve the vehicle makes to dis-
play in the drop-down under the text box. The minLength
property is set to the minimum number of characters that
must be typed prior to making the first call to the search-
Makes() method. I’ve set it to one, so the user must type in
at least one character in order to have the searchMakes()
method called.

function makesAutoComplete() {
 // Hook up Makes auto-complete
 $("#SelectedEntity_Make").autocomplete({
 source: searchMakes,
 minLength: 1
 });
}

Add the searchMakes() method that is called from the source
property. This method must accept a request object and a
response callback function. This method uses the $.get()
method to make the Web API call to the SearchMakes()
method passing in the request.term property, which is the
text the user entered into the vehicle makes text box. If the
call is successful, the data retrieved back from the Ajax call
is sent back via the response callback function.

function searchMakes(request, response) {
 $.get("/api/VehicleTypeApi/SearchMakes/" +
 request.term, function (data) {
 response(data);
 })
 .fail(function (error) {
 console.error(error);
 });
}

these methods. Open the VehicleTypeViewModel.cs file in
the PaulsAutoParts.ViewModeLayer project. Add a new
method to this class named SearchMakes() that makes the
call to the repository class method you just created.

public List<string> SearchMakes(
 string searchValue)
{
 return ((VehicleTypeRepository)Repository)
 .SearchMakes(searchValue);
}

Create New API Controller Class
Add a new class under the ControllersApi folder named Ve-
hicleTypeApiController.cs. Replace all the code within the
new file with the code shown in Listing 10. Most of this
code is boiler-plate for a Web API controller. The important
piece is the SearchMakes() method that’s going to be called
from jQuery Ajax to perform the auto-complete.

Add jQuery UI Code to Vehicle Type Page
Open the Views\VehicleType\VehicleTypeIndex.cshtml
file and, at the top of the page, just below the setting of
the page title, add a new section to include the jquery-
ui.css file. This is needed for styling the auto-complete
drop-down.

@section HeadStyles {
 <link rel="stylesheet"
 href="//code.jquery.com/ui/1.12.1
 /themes/base/jquery-ui.css">
}

Now go to the bottom of the file and in the @section
Scripts and just before your opening <script> tag, add the
following <script> tag to include the jQuery UI JavaScript
file.

<script src="https://code.jquery.com/ui
 /1.12.1/jquery-ui.js">
</script>

using Microsoft.AspNetCore.Http;
using Microsoft.AspNetCore.Mvc;
using PaulsAutoParts.AppClasses;
using PaulsAutoParts.Common;
using PaulsAutoParts.DataLayer;
using PaulsAutoParts.EntityLayer;
using PaulsAutoParts.ViewModelLayer;

namespace PaulsAutoParts.ControllersApi
{
 [ApiController]
 [Route("api/[controller]/[action]")]
 public class VehicleTypeApiController :
 AppController
 {
 #region Constructor
 public VehicleTypeApiController(
 AppSession session,
 IRepository<VehicleType,
 VehicleTypeSearch> repo) : base(session)
 {
 _repo = repo;
 }
 #endregion

 #region Private Fields
 private readonly IRepository<VehicleType,
 VehicleTypeSearch> _repo;
 #endregion

 #region SearchMakes Method
 [HttpGet("{make}", Name = "SearchMakes")]
 public IActionResult SearchMakes(string make)
 {
 IActionResult ret;

 VehicleTypeViewModel vm = new(_repo);

 // Return all makes found
 ret = StatusCode(StatusCodes.Status200OK,
 vm.SearchMakes(make));

 return ret;
 }
 #endregion
 }
}

Listing 10: Create a new Web API controller for handling vehicle type maintenance

Enhance Your MVC Applications Using JavaScript and jQuery: Part 3

27codemag.com

 .Select(v => v.Model).Distinct()
 .OrderBy(v => v).ToList();
}

Add aNew Method to the Vehicle Type View
Model Class

Instead of calling repository methods directly from con-
troller classes, it’s best to let your view model class call
these methods. Open the VehicleTypeViewModel.cs file in
the PaulsAutoParts.ViewModeLayer project. Add a new
method to this class named SearchModels() that makes
the call to the repository class method you just created.

public List<string> SearchModels(int year,
 string make, string searchValue)
{
 return ((VehicleTypeRepository)Repository)
 .SearchModels(year, make, searchValue);
}

Modify API Controller
Open the ControllersApi\VehicleTypeApiController.cs file
and add a new method named SearchModels() that can be
called from the client-side code. This method is passed the
year, make, and model to search for. It initializes the Vehi-
cleTypeViewModel class and makes the call to the Search-
Models() method to retrieve the list of models that match
the criteria passed to this method.

[HttpGet("{year}/{make}/{model}",
 Name = "SearchModels")]
public IActionResult SearchModels(int year,
 string make, string model)
{
 IActionResult ret;

Modify the return object to expose the makesAutoCom-
plete() method.

return {
 "setSearchValues": setSearchValues,
 "setSearchArea":
 mainController.setSearchArea,
 "isSearchFilledIn":
 mainController.isSearchFilledIn,
 "addValidationRules": addValidationRules,
 "makesAutoComplete": makesAutoComplete
}

Finally, modify the $(document).ready() function to call the
pageController.makesAutoComplete() method to hook up
jQuery UI to the vehicle makes text box.

$(document).ready(function () {
 // Add jQuery validation rules
 pageController.addValidationRules();

 // Hook up makes auto-complete
 pageController.makesAutoComplete();

 // Setup the form submit
 mainController.formSubmit();

 // Collapse search area or not?
 pageController.setSearchValues();
 // Initialize search area on this page
 pageController.setSearchArea();
});

Try It Out
Run the application and select the Admin > Vehicle Types
menu. Click on the Add button and click into the Makes text
box. Type the letter C and you should see a drop-down ap-
pear of makes that start with the letter C.

Search by Multiple Fields in
Auto-Complete
Technically, in the last sample, you should also pass the year
that the user input to the vehicle makes auto-complete.
However, just to keep things simple, I wanted to just pass
in a single item. Let’s now hook up the auto-complete for
the vehicle model input. In this one, you’re going to pass in
the vehicle year, make, and the letter typed into the vehicle
model text box to a Web API call from the auto-complete
method.

Add a New Method to the Vehicle Type Repository
Open the RepositoryClasses\VehicleTypeRepository.cs file
and add a new method named SearchModels(), as shown in
the following code snippet. This method makes the call to
the SQL Server to retrieve all distinct vehicle models for the
specified year, make, and the first letter or two of the model
passed in.

public List<string> SearchModels(
 int year, string make, string model)
{
 return _DbContext.VehicleTypes
 .Where(v => v.Year == year &&
 v.Make == make &&
 v.Model.StartsWith(model))

function searchModels(request, response) {
 let year = $("#SelectedEntity_Year").val();
 let make = $("#SelectedEntity_Make").val();

 if (make) {
 $.get("/api/VehicleTypeApi/
 SearchModels/" + year + "/" +
 make + "/" +
 request.term, function (data) {
 response(data);
 })
 .fail(function (error) {
 console.error(error);
 });
 }
 else {
 searchModels(request, response);
 }
}

Listing 11: The searchModels() method passes three values to the SearchModels() Web API

Enhance Your MVC Applications Using JavaScript and jQuery: Part 3

Users will be grateful
for AutoComplete.

28 codemag.com

Modify the $(document).ready() function to make the call
to the pageController.modelsAutoComplete() method, as
shown in Listing 12.

Try It Out
Run the application and click on the Admin > Vehicle Types
menu. Click on the Add button and put the value 2000 into
the Year text box. Type/Select the value Chevrolet in the
Makes text box. Type the letter C in the Models text box and
you should see a few models appear.

Calling Web API methods
from jQuery Ajax can greatly
speed up the performance
of your Web pages

Summary
In this article, you once again added some functionality to
improve the user experience of your website. Calling Web
API methods from jQuery Ajax can greatly speed up the per-
formance of your Web pages. Instead of having to perform
a complete post-back and redraw the entire Web page, you
can retrieve a small amount of data and update just a small
portion of the Web page. Eliminating post-backs is probably
one of the best ways to improve the user experience of your
Web pages. Another technique you learned in this article
was to take advantage of the jQuery UI auto-complete func-
tionality.

 VehicleTypeViewModel vm = new(_repo);

 // Return all models found
 ret = StatusCode(StatusCodes.Status200OK,
 vm.SearchModels(year, make, model));

 return ret;
}

Modify the Page Controller Closure
Open the Views\VehicleType\VehicleTypeIndex.cshtml
file. Add a new method to the pageController closure
named modelsAutoComplete(). The modelsAutoComplete()
method is the publicly exposed method called from the
$(document).ready() to hook up the auto-complete to the
models text box using the autocomplete() method. Pass
in an object to this method to set the source property
to the function to call to get the data to display in the
drop-down under the text box. The minLength property
is set to the minimum number of characters that must be
typed prior to making the first call to the searchModels()
function.

function modelsAutoComplete() {
 // Hook up Models AutoComplete
 $("#SelectedEntity_Model").autocomplete({
 source: searchModels,
 minLength: 1
 });
}

Add the searchModels() method (Listing 11) that’s called
from the source property. This method must accept a re-
quest object and a response callback function. This method
uses the $.get() method to make the Web API call to the
SearchModels() method passing in the year, make, and the
request.term property, which is the text the user entered
into the vehicle model text box. If the call is successful, the
data retrieved back from the Ajax call is sent back via the
response callback function.

Modify the return object to expose the modelsAutoCom-
plete() method from the closure.

return {
 "setSearchValues": setSearchValues,
 "setSearchArea":
 mainController.setSearchArea,
 "isSearchFilledIn":
 mainController.isSearchFilledIn,
 "addValidationRules": addValidationRules,
 "makesAutoComplete": makesAutoComplete,
 "modelsAutoComplete": modelsAutoComplete
}

SPONSORED SIDEBAR:

Need FREE Project Advice?
CODE Can Help!

No strings, free advice on
new or existing software
development projects.
CODE Consulting experts
have experience in cloud,
Web, desktop, mobile,
microservices, containers,
and DevOps projects.
Schedule your free hour
of CODE call with our
expert consultants today.
For more information,
visit www.codemag.com/
consulting or email us at
info@codemag.com.

� Paul D. Sheriff
�

$(document).ready(function () {
 // Add jQuery validation rules
 pageController.addValidationRules();

 // Hook up makes auto-complete
 pageController.makesAutoComplete();

 // Hook up models auto-complete
 pageController.modelsAutoComplete();

 // Setup the form submit
 mainController.formSubmit();

 // Collapse search area or not?
 pageController.setSearchValues();
 // Initialize search area on this page
 pageController.setSearchArea();
});

Listing 12: Hook up the auto-complete functionality by calling the appropriate method in the pageController closure

Enhance Your MVC Applications Using JavaScript and jQuery: Part 3

www.codemag.com/consulting

29codemag.com

ONLINE QUICK ID 2201041

Software Development is Getting Harder, Not Easier

Software Development is
Getting Harder, Not Easier
I hate that expression, “It’s complicated.” When people tell me it’s complicated, it almost always isn’t. What they’re really saying
is that they don’t want to talk about it. But when we’re talking about software development, it really IS complicated. Software
development is notoriously difficult and it’s getting steadily harder. And we need to talk about it. Imagine a world where a

developer who understands the basics of programming
(things like variables, branching, and looping) can spend
a weekend reading a manual cover to cover and become
productive in a new environment by Monday morning. An
environment that includes built-in UI, database and report-
ing tools, its own IDE, integration paths for third-party
systems, and everything else they might need to build and
maintain a system. A world where the tool is only updat-
ed about once every two years or so and where reading a
couple of articles or attending a conference for a few days
gets them up to speed on ALL the new stuff. A world where
developers get very skilled at using the tools and become
masters of their craft.

That world existed between 20 and 30 years ago. Since then,
the developer’s world has accelerated and expanded at an
increasing pace. Today, just keeping up with what’s avail-
able to us is like drinking from a fire hose. Where do we even
find time to write code?

Before you go thinking this article
is about nostalgia, it isn’t.

I believe in the original definition of nostalgia, as a medi-
cal diagnosis for grave illness, one that couldn’t be cured,
even when the patient was lucky enough to be able to try to
relive those memories. I believe we can’t—and shouldn’t—
go back, only forward. But all hope is not lost. Let’s start
a conversation about complexity and begin to deal with it.

Where is complexity coming from? I believe it stems from
the plethora of platforms and toolsets, higher expectations,
larger systems, bigger teams, faster delivery of new ideas,
and an ever-expanding set of opinions. Today, a full-stack
developer must have a good working knowledge of mul-
tiple user interface tools, databases, cloud offerings, and
business logic tools. Even picking just one UI platform, say
HTML and JavaScript, there are hundreds of frameworks to
choose from and they need to be mixed and matched to get
a good result. New frameworks and major updates to exist-
ing frameworks are coming out almost daily. No one can
make a perfect decision.

That’s just for development; I didn’t include new Web
assembly-centric UIs like Blazor. I also ignored desktop
and native mobile applications and more, and included
choosing and learning an IDE to develop in. The number of
platforms and toolsets available today is astounding and
the pendulum is now swinging back for many companies

who previously touted giving teams complete autonomy
over their platforms and toolsets, to choosing and stan-
dardizing on a smaller subset. These companies are coping
with too many choices, which leads to both decision pa-
ralysis and an inability to get everyone on the same page.
Constraining the number of choices is one way to combat
complexity.

Too many choices leads to both
decision paralysis and an inability
to get everyone on the same page.

Higher expectations, larger systems, and larger teams
are other drivers of complexity. Development is no longer
just getting the code to function and doing some perfor-
mance tuning. It also has to be secure, scalable, a great
user experience, accessible from a variety of devices, cloud-
deployable, tested, maintainable, kept up to date, and con-
tinuously improved. Also, at one time, most apps targeted
internal users; now most apps are targeted at consumers,
which ups the bar considerably.

The move toward both more systems and larger systems
requires more teams and more developers, which leads to
difficulties getting everyone rowing the boat in the same di-
rection. When I say teams in this article, I don’t just mean a
development team within a company. I also mean the team
developing the toolsets and platforms and those consuming
what the team is building. We must work with teams both
inside and outside our walls. This complexity can be miti-
gated by better collaboration.

The collaboration problem isn’t unique to the software
industry, and we’re getting better at meeting these chal-
lenges, but the trends aren’t going to slow down or reverse
themselves.

The biggest drivers of complexity, in my experience, and
those we can do the most about, are last two I mentioned.
The faster delivery of new ideas and the ever-expanding set
of opinions have, ironically, sprung from our own attempts
to solve complexity issues and to make things easier. Today,
everyone who solves an obstacle to coding productivity can
publish and promote that solution. The solutions are often
quite good and are easy to find on the Internet by anyone
having a similar problem. However, sometimes the solution
becomes widely accepted and is thought of as the “right
way” to code.

Mike Yeager
www.internet.com

Mike is the CEO of EPS’s
Houston office and a skilled
.NET developer. Mike excels
at evaluating business
requirements and turning
them into results from
development teams.
He’s been the Project Lead
on many projects at EPS and
promotes the use of modern
best practices, such as
the Agile development
paradigm, use of design
patterns, and test-drive
and test-first development.
Before coming to EPS,
Mike was a business owner
developing a high-profile
software business in the
leisure industry. He grew the
business from two employees
to over 30 before selling the
company and looking
for new challenges.
Implementation experience
includes .NET, SQL Server,
Windows Azure, Microsoft
Surface, and Visual FoxPro.

30 codemag.comSoftware Development is Getting Harder, Not Easier

What our industry lacks is a good way to tell if a particu-
lar solution even applies to a project. We sometimes adopt
things like SOLID principles, microservices, containers, Do-
main Driven Design, and container orchestration because
they’re considered “good” or they’re thought of as a way to
future-proof our solution, when in fact, they are often solu-
tions to problems we don’t have. In those cases, we’re only
adding complexity by adopting them.

How, then, can we be better at using the right tools at the
right time? There’s no magic solution, only hard work, care-
ful reflection, and creativity. Let’s examine the problem.

How to Solve the Problem of Complexity
When we think about how to solve the problem of complex-
ity, the answer invariably comes down to breaking down a
complex system into a series of smaller, more discrete, less
complex systems that aren’t too complex standing alone.
This makes the new modules more approachable and the
goals easier to achieve. But nothing comes for free and the
catch is that we now have to communicate and coordinate
among these smaller, more discreet systems, which often

People Want To Be Led
& Developed, Not Managed.
Leadr is a people development software
that helps you engage and grow every
person on your team.
We’re Hiring a Principal Graph
Database Engineer
Remote, so long as you are living in the US

Leadr is an Equal Opportunity-A�rmative Action Employer.
Remuneration for this role is fixed at $120,000

YOU WILL BE SET TO CRUSH
THIS ROLE IF...
• You have 10+ years of
experience building web
applications, especially Sass
applications.
• You have prior software
engineering experience on a B2B
or B2C SaaS product with
a SDLC similar to what we are
striving towards.
• You come from a startup
background and are comfortable
working in a fast-paced
environment where you
sometimes need to solve
problems on your own, and you
can drive a project to completion.

• You are a graph database
expert, and are an expert in
working with graph and
other graph database solutions.
• You are highly proficient in other
types of databases, such as
relational and document
database storage solutions.
• You have a masters degree or
PhD in Information Systems.
• You can devise engineering
solutions by considering multiple
options and then present the
pros/cons including cost, e�ort,
complexity, scalability,
maintainability, etc. as part of your
proposal and walk others through
your decision matrix.

means new tools and new patterns, and that actually ADDS
complexity to the system as a whole. It results in a new
(but usually manageable) set of problems and more code
to write, test, and maintain. Because of this, we have to be
very careful in choosing how we approach each problem. It’s
time we stopped living by the dictum that every problem can
be solved by adding another layer of abstraction and start
asking if it should be solved that way.

What can we do about the complexity that comes from the
steady gushing of new ideas? I believe that we, as an in-
dustry, should be more demanding of ourselves and of oth-
ers. Instead of looking only at all of the good that comes
from something new, we should demand to also know the
downsides and demand help in determining when and where
these ideas can be used to our advantage. Often, when look-
ing at a new technology, the material is presented by diving
in and showing how it works. There isn’t even a mention of
the tradeoffs or even which problems are being solved.

Wouldn’t it be refreshing to read
about a new technology and
why it was created, which things
it does really well, and which things
it isn’t intended for instead of
reading about how sliced bread
has a new challenger?

New technologies should be approached with litmus tests
and rules of thumb, even if we have to develop them our-
selves. Is this new idea “good” or “bad”? It really depends on
the problem you’re trying to solve. What we need are better,
more available ways to make that determination. Wouldn’t
it be refreshing to do some research into a new technol-
ogy and read about why it was created, which things it does
really well, and which things it isn’t intended for, instead
of reading about how sliced bread has a new challenger? I
see this kind of documentation occasionally, but not nearly
enough. It does us all a disservice to become such a fanboy
of a technology that we don’t present information that al-
lows our peers to make good decisions. That information is
at least as valuable as the sunshine we spread. Often more.

When thinking about the rapid growth of complexity and
information in development, I often think about industries
that have gone through this kind of evolution ahead of us.
The airliner industry is a good example. The early airliner
industry had a lot of competitors and the challenges were
mainly engineering problems. Building commercial air-
planes had been figured out and the challenge was in im-
proving the airplanes. As the industry matured, the planes
became increasingly larger and more complex and compa-
nies handled the complexity by adding more draftsmen,
more engineers, more workstations, more bodies. They next
handled the increased complexity by breaking the process
down into smaller, more discreet processes. Some employ-
ees only worked on cabin interiors, some only worked on
aerodynamics, some only on landing gear. All this segrega-
tion and specialization added complexities in other areas,
like coordination among the teams and common goals. Hun-

31codemag.com Software Development is Getting Harder, Not Easier

fit the requirements of a particular project and are easy to
reason about. We must allow others to make good, informed
decisions about what we build.

This is where the next big innovation will happen. Evolv-
ing technologies, tools, platforms, ideas, and design pat-
terns are good things, but they’re only useful if they can be
discovered, understood, and leveraged. I believe we need
a self-curating system beyond the plethora of take-it-or-
leave-it open-source projects and the commercially driven
resources we have now. Our current situation has taken
shape and that shape is a pile. And it’s a very large and un-
ruly pile that’s overwhelming and doesn’t serve our needs.
We must organize that pile if we are to evolve.

Conclusion
There are things we can do to keep complexity from killing
us. Currently, each of us is faced with a gigantic pile of new
ideas, each labeled with a catchy name, some industry buzz-
words and some marketing blurbs. The pile is too big and
too messy. We need to change that so that each idea in the
pile is labeled with its categorizations and specifications, so
we can organize them and make rational and appropriate
decisions about them. We need to specialize so that we can
reduce the sheer number of ideas that we need to worry
about and increase our understanding of and improve our
discourse about those we do care about. We need to create
better ways to collaborate with other specialists and their
parts of the pile. We need to pick reasonable, curated de-
faults, so that not every specialist has to decide between
every option in their part of the pile, every time. And finally,
we need to develop a professional approach to these ideas
so we can train the next generation, not just on looping and
branching and technical basics, but also on how to make
good use of the organized, categorized, curated, and well-
described pile of ideas we’re creating.

It is complicated. But there’s hope.

dreds of draftsmen with pencils were generating millions
of drawings to be presented and argued over in endless
meetings. New designs started to take years, sometimes
decades, to come to fruition. Companies failed or were ac-
quired by other companies.

The process had become too complex. This is where our in-
dustry is now. Developers are specializing more and we have
lots of bodies all headed in different directions.

Companies like Boeing and Airbus innovated and began us-
ing software and collaboration tools that replaced much of
the manual engineering, drafting, and meetings, and things
began to speed up again, but not for the reason you may
think. Software wasn’t a magic bullet. All of that innovation
also led to new capabilities, offsetting or even increasing
complexity instead of reducing it. Todays, airliners are more
complex than ever and the next generation will be even
more complex.

What turned things around for the airliner manufacturers
was that the teams and their software were getting better
at working together; they created and adhered to standards
and, most critically, they simplified the work other teams
need to do to make use of what they’d built. The individual
components were trending toward becoming black boxes
that either did or didn’t fit the requirements of a particu-
lar project and were relatively easy to make decisions about,
whether that decision was to modify the black box or to build
a new one. It wasn’t the tooling or the innovation that made
the defining difference. It was the ethos that each team was
part of a larger team and that how those teams interacted
was as important as what that team actually produced.

Each team is part of a larger team
and how those teams interact
is as important as what that team
produces.

As the software industry continues to evolve, the unfettered
gushing of new ideas, tools, technologies, and platforms
must become more stringent. Developers aren’t keeping up.
All of the wonderful toys have become as much a burden on
the industry as a blessing. Software projects still fail at an
astoundingly high rate and it’s almost always because ei-
ther the requirements are too complex or the chosen imple-
mentation is too complex.

How teams interact is as important
as what the team produces.

Complexity is killing us. Our industry needs to develop the
airliner ethos that each team (in or out of your walls) is part
of a larger team and that how those teams interact is as
important as what the team produces. Our efforts must not
be only to build newer, shinier, better, faster things, but to
trend toward building black boxes that either do or don’t

� Mike Yeager
�

32 codemag.com

ONLINE QUICK ID 2201051

Beginner’s Guide to Deploying PHP Laravel on the Google Cloud Platform: Part 2

Beginner’s Guide to Deploying
PHP Laravel on the Google Cloud
Platform: Part 2
In the first article in this series (CODE Magazine, November/December 2021), you were introduced to Google Cloud Platform
(GCP) and the PHP Laravel framework. You started by creating your first PHP Laravel project and pushed the app to a GitHub
repository. Then you moved on to creating the Google App Engine (GAE) project and built the Google Cloud Build workflow to

enable CI/CD (https://www.redhat.com/en/topics/devops/
what-is-ci-cd) for the automated deployments on GCP.

Now, you’ll go a step further and connect your app to a local
MySQL database. Then, you’ll introduce the Google Cloud
SQL service and create your first SQL database in the cloud.
Right after that, I’ll show you one way to run Laravel data-
base migrations from within the Cloud Build workflow. Fi-
nally, I’ll enhance the Cloud Build workflow by showing you
how to back up the SQL database every time you deploy a
new version of the app on GCP.

First things first, let’s locally connect the Laravel app to a
MySQL database.

Create and Use a Local MySQL Database
In Part I of this series, I introduced Laravel Sail (https://
laravel.com/docs/8.x/sail). It’s a service offered by the
Laravel team to dockerize your application locally. One of
the containers that Sail creates locally, inside Docker, is the
mysql container. It holds a running instance of MySQL Da-
tabase Service. Listing 1 shows the mysql service container
section inside the docker-compose.yaml file.

When you start the Sail service, it creates a Docker contain-
er for the mysql service and automatically configures it with
a MySQL Database that’s ready to use in your application.

Sail picks up the database details from the current applica-
tion environment variables that you usually define inside
the .env file.

Let’s have a look at the database section of the .env file:

DB_CONNECTION=mysql
B_HOST=mysql
DB_PORT=3306
DB_DATABASE=laravel
DB_USERNAME=sail
DB_PASSWORD=password

These are the default settings that ship with a new Laravel
application using Sail service.

You can change the settings as you see fit. For now, I just
changed the database name to be gcp_app.

In Laravel 8.x, you can use any of
the following database systems:
MySQL 5.7+, PostgreSQL 9.6+,
SQLite 3.8.8+, or SQL Server 2017.

Step 1: Create and Connect to a MySQL Database
For now, let’s keep them as they are and start up the Docker
containers using the Sail service command:

sail up --d

This command starts up all services that the docker-com-
pose.yaml file hosts.

Let’s connect to the database that sail has created. I’m us-
ing TablePlus (https://tableplus.com/) Database Manage-
ment Tool to connect to the new database. Feel free to use
any other management tool of your own preference. Figure
1 shows the database connection window.

I’ve highlighted the important fields that need your attention:

•	 Name: The name of the connection
•	 Host: The IP address of the server hosting the MySQL

databaseFigure 1: The TablePlus Connection Window

Bilal Haidar
bhaidar@gmail.com
https://www.bhaidar.dev
@bhaidar

Bilal Haidar is an
accomplished author,
Microsoft MVP of 10 years,
ASP.NET Insider, and has
been writing for CODE
Magazine since 2007.

With 15 years of extensive
experience in Web develop-
ment, Bilal is an expert in
providing enterprise Web
solutions.

He works at Consolidated
Contractors Company in
Athens, Greece as a full-
stack senior developer.

Bilal offers technical
consultancy for a variety
of technologies including
Nest JS, Angular, Vue JS,
JavaScript and TypeScript.

https://twitter.com/bhaidar
https://www.redhat.com/en/topics/devops/what-is-ci-cd

33codemag.com Beginner’s Guide to Deploying PHP Laravel on the Google Cloud Platform: Part 2

Locate the \resources\views folder and create the editors.
blade.php file. Inside this file, paste the content you can find
in this public GitHub Gist: Editors View (https://gist.github.
com/bhaidar/e9c4516074a2346f0ce226ce92003cfc).

The view is straightforward. It consists of an HTML Form to
allow the user to add a new editor, and a table underneath
to show all stored editors in the database. This will do the
job to demonstrate a Laravel database connection.

Step 2.3: Add a Route for the New View
To access the new view in the browser, let’s add a new route
to point to this new view. Locate the \routes\web.php file
and append the following two routes:

Route::get(
 '/editors', [
 \App\Http\Controllers\EditorController::class,
'index'
])->name('editors.index');

Route::post(
 '/editors', [

•	 User: The database user
•	 Password: The user password
•	 Database: The name of the database

Once you’re done filling in all the necessary fields, click the
Connect button. Figure 2 shows the database tables.

You might be wondering where the tables came from. This is
the result of creating and running the app in the first part of
this series. You ran a command to migrate the database and
create all the tables that shipped with Laravel.

The command to run is:

sail artisan migrate:fresh

Now that you’ve successfully connected your app to a fresh
copy of a MySQL database, let’s build a page to manage code
editors that you want to keep track of in your database.

Step 2: Build the Coding Editors’ Management Page
Let’s build a simple page to manage a list of coding editors.
The goal is to allow you to add a new coding editor, with
some details, and view the list of all editors you’re adding.

Step 2.1: Install and Configure Tailwind CSS
Start by installing and configuring Tailwind CSS (https://
tailwindcss.com/) in the Laravel project. It’s a booming CSS
framework that I’ll use to style the page you’re building in
this section. You can check out their online guide on how
to install and use it inside a Laravel project (https://tail-
windcss.com/docs/guides/laravel).

Another option is to make use of Laravel-frontend-presets/
tailwindcss package, a Laravel front-end scaffolding preset
for Tailwind CSS (https://github.com/laravel-frontend-pre-
sets/tailwindcss).

Step 2.2: Create the Editors’ Blade Page
Now that you’ve installed and configured Tailwind CSS,
let’s create your first Blade (https://laravel.com/docs/8.x/
blade) view to manage the editors.

 mysql:
 image: 'mysql:8.0'
 ports:
 - '${FORWARD_DB_PORT:-3306}:3306'
 environment:
 MYSQL_ROOT_PASSWORD: '${DB_PASSWORD}'
 MYSQL_DATABASE: '${DB_DATABASE}'
 MYSQL_USER: '${DB_USERNAME}'
 MYSQL_PASSWORD: '${DB_PASSWORD}'
 MYSQL_ALLOW_EMPTY_PASSWORD: 'yes'
 volumes:
 - 'sailmysql:/var/lib/mysql'
 networks:
 - sail
 healthcheck:
 test: ["CMD", "mysqladmin", "ping", "-p${DB_PASSWORD}"]
 retries: 3
 timeout: 5s

Listing 1: .env Database Settings

Figure 2: Open database connection

https://tailwindcss.com/
https://tailwindcss.com/docs/guides/laravel
https://github.com/laravel-frontend-presets/tailwindcss
https://laravel.com/docs/8.x/blade
https://gist.github.com/bhaidar/e9c4516074a2346f0ce226ce92003cfc

34 codemag.com

The routes use the EditorController that you haven’t created
yet. Let’s run a new Artisan command to create this controller:

sail artisan make:controller EditorController

This command creates a new controller under the \App\
Http\Controllers folder.

The index() action retrieves all stored editors in the database
and returns the editors view together with the data to display.

public function index()
{
 $editors = Editor::all();
 return view('editors', compact('editors'));
 }

The store() action takes care of storing a new editor record in
the database. It validates the POST request to make sure that
all required fields are there. Then, it creates a new editor re-
cord in the database. Finally, it redirects the user to the edi-
tors.index route (you have defined this inside \routes\web.
php). Listing 2 shows the store() action source code entirely.

Step 2.4: Create a Laravel Migration
To store information about coding editors, you need to cre-
ate a corresponding database table. In Laravel, you need
to create a new database migration and run it against the
connected database. Welcome to Artisan Console!

Laravel ships with Artisan (https://laravel.com/docs/8.x/
artisan), a command-line interface (CLI), that offers many
commands to create functionality in the application. It’s lo-
cated at the root of the project folder and can be called like
any other CLI on your computer.

To create a new Laravel database migration, run the follow-
ing command:

sail artisan make:model Editor -m

This command makes a new Model (https://laravel.com/
docs/8.x/eloquent) class together with a database migra-
tion file (-m option).

Laravel’s make:model Artisan
command can generate a
model, controller, migration, and
factory in one single command.
You can run the options using -mcf.

Locate the \database\migrations folder and open the new
migration PHP file that you just created. Replace the con-
tent of this file with the content showing in Listing 3.

The core of every migration file is the up() method.

Schema::create('editors',
 function (Blueprint $table) {
 $table->id();

 \App\Http\Controllers\EditorController::class,
 'store'
]);

The first route allows users to access the view (GET) and has
a route name of editors.index. The second route, on the
other hand, allows executing a POST request to create a new
editor record in the database.

public function store(Request $request)
 {
 $request->validate([
 'name' => 'required',
 'company' => 'required',
 'operating_system' => 'required',
 'license' => 'required',
]);

 Editor::create($request->all());

 return redirect()->route('editors.index')
 ->with('success', 'Editor created successfully.');
 }

Listing 2: Store() method

class CreateEditorsTable extends Migration
{
 /**
 * Run the migrations.
 *
 * @return void
 */
 public function up()
 {
 Schema::create('editors', function (Blueprint $table) {
 $table->id();
 $table->string('name', 255);
 $table->string('company', 500);
 $table->string('operating_system', 500);
 $table->string('license', 255);
 $table->timestamp('created_at')->useCurrent();
 $table->timestamp('updated_at')->nullable();
 });
 }

 /**
 * Reverse the migrations.
 *
 * @return void
 */
 public function down()
 {
 Schema::dropIfExists('editors');
 }
}

Listing 3: Database migration

class Editor extends Model
{
 use HasFactory;

 protected $fillable = [
 'name',
 'company',
 'operating_system',
 'license',
 'created_at'
];
}

Listing 4: Editor Model class

Beginner’s Guide to Deploying PHP Laravel on the Google Cloud Platform: Part 2

https://laravel.com/docs/8.x/artisan
https://laravel.com/docs/8.x/eloquent

35codemag.com

and make sure the database connection is up and running.
Figure 3 shows the Editors’ view in the browser.

That’s it! Now that you’ve successfully connected your app
to a local database, let’s explore Google Cloud SQL and con-
figure the app to use one.

Before moving on, make sure you commit and push your
change onto GitHub. Keep in mind that this action triggers
the GCP Cloud Build Workflow to deploy a new version of
your Laravel app.

Create and Use a Google Cloud SQL
Database
Google Cloud SQL is a fully managed relational database
that supports MySQL (https://www.mysql.com/), Post-
greSQL (https://www.postgresql.org/), and Microsoft SQL
Server (https://www.microsoft.com/en-us/sql-server/sql-
server-downloads).

Google Cloud SQL is a fully
managed relational database
that supports MySQL, PostgreSQL,
and Microsoft SQL Server

You can read the full documentation on Google Cloud SQL
here: https://cloud.google.com/sql.

 $table->string('name', 255);
 $table->string('company', 500);
 $table->string('operating_system', 500);
 $table->string('license', 255);
 $table->timestamp('created_at')->useCurrent();
 $table->timestamp('updated_at')->nullable();
});

Inside the up() method, you’re creating the editors table
and specifying the columns that should go under it. Listing 4
shows the Editor model class.

I’ve added the $fillable property to whitelist the columns
that are available for the mass assignment. This comes in
later when creating and storing editors in the database.

You can read more about $fillable and $guarded in Lara-
vel by checking this awesome and brief introduction on the
topic: https://thomasventurini.com/articles/fillable-vs-
guarded-on-laravel-models/.

Now that the migration and model are both ready, let’s run
the migration to create the new table in the database. Run
the following command:

sail artisan migrate

You can verify that this command has created the table by
checking your database.

Step 2.5: Run the App
The final step is to run the app and start using the edi-
tors’ route to store a few coding editors in the database

Figure 3: Editors’ view in the browser

Beginner’s Guide to Deploying PHP Laravel on the Google Cloud Platform: Part 2

https://thomasventurini.com/articles/fillable-vs-guarded-on-laravel-models/
https://www.microsoft.com/en-us/sql-server/sql-server-downloads

36 codemag.com

The next step is to select which database engine you’re go-
ing to create. For this series, stick with a MySQL database.
Figure 5 shows the database engine offerings by GCP.

Select the Choose MySQL button. Next, GCP prompts you
to fill in the configuration details that GCP needs to create
your MySQL instance. Figure 6 shows the MySQL instance
configuration settings.

At a minimum, you need to input the following fields:

•	 Instance ID
•	 Password (for the root MySQL instance user). Make sure

you remember this password as you’ll need it later.
•	 Database version. I’ll stick with MySQL 5.7 for now.
•	 Region (preferably the same region you picked for the

GAE app)
•	 Zonal availability (either single or multiple zones, de-

pending on your requirements and needs)

The rest of the fields are optional. Look at them in case you
want to change anything.

Click the CREATE INSTANCE button. GCP starts creating the
instance and directs you to the Cloud SQL Dashboard upon
completion. Figure 7 shows the Cloud SQL Dashboard.

From here, you’ll start configuring the MySQL instance and
preparing it for connection from your Laravel app.

Step 2: Create a MySQL Database
On the gcp-app-database dashboard, locate and click the
Databases on the left-side menu. This page lists all the da-
tabases you create under the MySQL Instance.Figure 5: GCP database engine offerings

Figure 4: Google Cloud SQL

In this section, you’re going to create your first Cloud SQL
and connect it from your Laravel app running on the GAE
(Google App Engine).

Log into your account at https://console.cloud.google.
com/ and navigate to the Cloud SQL section by selecting it
from the left-side menu. Figure 4 shows where to locate the
Cloud SQL on the main GCP menu.

The GCP (Google Cloud Platform) takes you through a few
steps to help you easily create a new instance. Let’s start!

Step 1: Create a MySQL Instance
Locate and click the CREATE INSTANCE button. Follow the
steps to create your first Cloud SQL instance.

Beginner’s Guide to Deploying PHP Laravel on the Google Cloud Platform: Part 2

https://console.cloud.google.com/

37codemag.com

Locate and click the Connections on the left-side menu.
This page lists all the networking configurations that govern
your database instance.

For now, keep selecting the Public API option. It allows you
to connect to your database by using the Cloud SQL Proxy.

Click the CREATE DATABASE button to create a database for
the Laravel app. Figure 8 shows the create database form.

Provide a name for the new database and click the CREATE
button. Just a few seconds later, you’ll see the new data-
base listed under the current instance list of databases.

Figure 6: MySQL instance configuration settings

Figure 7: Cloud SQL dashboard

Beginner’s Guide to Deploying PHP Laravel on the Google Cloud Platform: Part 2

WANT TO
LIVE ON

MAUI?

Advertisement

IF YOU CAN WORK FROM HOME,
WHY NOT MAKE PARADISE YOUR HOME?

www.Live-On-Maui.com

The world has changed. Millions of people are working from home, and for many, that
will continue way past the current crisis. Which begs the question: If you can work from
home, then why not make your home in one of the world’s premiere destinations and
most desirable living areas?

The island of Maui in Hawai’i is not just a fun place to visit for a short vacation, but it
is uniquely situated as a place to live. It offers great infrastructure and a wide range of
things to do, not to mention a very high quality of life.

We have teamed up with CODE Magazine and Markus Egger to provide you information
about living in Maui. Markus has been calling Maui his home for quite some time, so
he can share his own experience of living in Maui and working from Maui in an industry
that requires great infrastructure.

For more information, and a list of available homes, visit www.Live-On-Maui.com

Steve and Carol Olsen
Maui, Hawai’i

This loosely translates to “Maui is the best”. As someone who has been calling Maui

home for a while now, I can wholeheartedly confirm this. After having travelled the world,

and after having lived in a variety of places, I find Maui to be truly unique.

MAUI NO KA OI!

Advertisement

Most people know Maui is a place to go for a week on
vacation. And that is certainly great and very enjoyable.
However, Maui is so much more! To me, Maui is the per-
fect mix that makes me feel like I am living on a tropi-
cal island yet being a developed place with great infra-
structure and great quality of life. A lot of this is true for
the Hawaiian Islands in general. But while Oahu (with its
capital of Honolulu) is essentially a big city with a lot of
people that always reminds me of Southern California,
and while islands like Kauai or the Big Island of Hawai’i
are a bit too “back to the roots” for me, Maui is just per-
fect. You can enjoy a great day at the beach or in nature,
or you can go to a nice restaurant, the movies, or a con-
cert. It’s the quality of life provided by a modern place in
the Western world, paired with a tropical island paradise.

Maui has many unique advantages. There is no hurri-
cane season and no real rainy season. The weather is
nice year-round, especially on the south-side of the is-
land. There are no dangerous animals. Not even mos-
quitoes. How does 82-degree weather on a nice beach
with a Mai Tai or Pina Colada sound? That’s Maui for you!

As someone who works in the tech industry, good in-
frastructure is important to me. After all, I need to work
as productively from Maui as I do when I am on the
“mainland” (which is what we call the continental US
here in Hawai’i). I have a 300Mbit internet connection
going to my home, and it is inexpensive. My connec-
tion to other parts of the world is better and less ex-
pensive here than it is on most main-land locations.
We have the same stores and supermarkets as every-
where else in the US. Schools are decent. The same
is true for healthcare. Flight connections are great,
and it is not at all difficult to travel from and to Maui.

I live on the south-side of the island in an area called
“Kihei”. Especially the southern parts of Kihei, known
as “Wailea” and “Makena”, are the areas I truly rec-
ommend to anyone (although there are other places

worth considering also). I like this area for its great qual-
ity of housing, low crime, great weather, and the world’s
greatest beaches. I enjoy playing a round of golf or go-
ing to a great restaurant with friends. When I want to
feel like I’m on vacation for an hour or two, I swing by
one of the hotels for a snack at the pool bar. When I feel
like exercising, I ride my bike along the ocean or go for
a hike into the jungle or across lava fields.

As we have been going through the COVID-19 crisis, it
has become more and more clear how great a location
Maui is. For one, the warm weather and outdoor living
have kept the COVID-19 numbers low, and the quality
of life high. And while nobody wants to be hospitalized,
it has been nice to know that we have better healthcare
here than other tropical locations. (Essentially the same
healthcare as anywhere else in the US.) While we also
had to deal with a lockdown, and many restaurants and
hotels have been closed, we have several places that
are not just open, but since everything happens out-
doors, many are perfectly safe to visit. I really can’t think
of a better place to weather this pandemic than Maui.

So yes: Maui No Ka Oi! To me, there isn’t another place
that even comes close. I have a long list of other places
I enjoy visiting that are awesome too. Do I want to go
to Bora Bora, Singapore, or many other great loca-
tions? Sure, I do! But what do you do in Bora Bora after
two weeks? Maui on the other hand is a great place to
set up a life and stay for good.

I would love to see you on Maui in the future. Maybe
we can share one of those Mai Tais on the beach. I rec-
ommend talking to Carol Olsen, who has been helping
me with all my real estate needs in South Maui. Moving
to Maui has been the best decision of my life. I am sure
you would enjoy it too!

Markus Egger
Publisher, CODE Magazine

MAUI PROPERTIES

Kihei Homes Kihei Condos Kihei Land

Makena LandMakena CondoMakena Home

Wailea Homes Wailea Condos Wailea Land

42 codemag.com

INSTANCE_CONNECTION_NAME is the connection name that
GCP provides, and you can locate it in Figure 7 under the
Connection name field.

To start the Cloud SQL Auth Proxy, run the following command:

./cloud_sql_proxy \
 -instances=INSTANCE_CONNECTION_NAME=tcp:3306

Replace the INSTANCE_CONNECTION_NAME with the real
connection name.

Figure 9 shows the Cloud SQL Auth Proxy connected and
ready to establish a database connection to any database
under the currently connected instance.

With TCP connections, the Cloud SQL Auth proxy listens
on localhost (127.0.0.1) by default. So when you specify
tcp:PORT_NUMBER for an instance, the local connection is at
127.0.0.1:PORT_NUMBER. Figure 10 shows how to connect to
the db_1 using TablePlus (https://tableplus.com/).

Step 3: Use Cloud SQL Auth Proxy to Connect
to the Database
The Cloud SQL Auth proxy (https://cloud.google.com/sql/
docs/mysql/sql-proxy) provides secure access to your Cloud
SQL instances without the need for Authorized networks or for
configuring SSL. Download the Cloud SQL Auth Proxy version
that best fits in your environment by checking this resource:
https://cloud.google.com/sql/docs/mysql/sql-proxy#install

You have multiple ways to use the Cloud SQL Auth Proxy.
You can start the Cloud SQL Auth proxy using TCP sockets,
Unix sockets, or the Cloud SQL Auth proxy Docker image. You
can read about how to use the Cloud SQL Auth Proxy here:
https://cloud.google.com/sql/docs/mysql/connect-admin-
proxy#tcp-sockets

For this series, I’ll be using the TCP sockets connection. Use
the following command to connect to the Cloud SQL instance:

./cloud_sql_proxy \
 -instances=INSTANCE_CONNECTION_NAME=tcp:3306

Figure 9: Cloud SQL Auth Proxy connection

Figure 8: Create a new MySQL database.

Beginner’s Guide to Deploying PHP Laravel on the Google Cloud Platform: Part 2

https://cloud.google.com/sql/docs/mysql/sql-proxy
https://cloud.google.com/sql/docs/mysql/connect-admin-proxy#tcp-sockets

43codemag.com

On a terminal window, run the following command to re-
fresh the app configurations:

php artisan config:cache

This command clears the old configurations and caches the
new ones.

The app, when it runs, is now connected to the Cloud data-
base. Hence, to run the Laravel migrations, you just need to
run the following command:

php artisan migrate:fresh

Notice the use of php artisan rather than sail artisan. You
use the sail command only when interacting with the Sail
environment locally.

Switch back to TablePlus to see all the tables there. Figure
11 shows all the tables running a fresh Laravel migration.

I’ve highlighted the important fields that need your attention:

•	 Name: The name of the connection
•	 Host: The IP address of the server hosting the MySQL

database. In this case, it’s 127.0.0.1.
•	 User: The database user. In this case, you’re using the

root user.
•	 Password: The user password. The root password that

you previously created for the MySQL instance.
•	 Database: The name of the database. In this case, it’s db_1.

Click the Connect button to successfully connect to the
database. The database is still empty and you’ll fill it with
Laravel tables in the next section.

Step 4: Run Laravel Migrations on the New Database
In Steps 2.4 and 2.5, you created a database migration and
pushed the code to GitHub. By pushing the code, the GCP
Cloud Build Workflow runs and deploys a new version of the
app. This means that your app on the GAE is now up to date,
with the editors’ view up and running.

Before you test your view on GAE, let’s run the Laravel mi-
grations on the cloud database. While the Cloud SQL Auth
Proxy is running, switch to the app source code and apply
the following changes.

Locate and open the .env file and update the database sec-
tion as follows:

DB_CONNECTION=mysql
DB_HOST=127.0.0.1
DB_PORT=3306
DB_DATABASE=db_1
DB_USERNAME=root
DB_PASSWORD=

Make sure you replace the DB_HOST with 127.0.0.1. Also
replace the DB_DATABASE with db_1, the DB_USERNAME
with root, and, finally, set the DB_PASSWORD for the root
user.

Figure 11: Tables created by running a fresh Laravel migration

Figure 10: Connect to db_1 via Cloud SQL Auth Proxy

Beginner’s Guide to Deploying PHP Laravel on the Google Cloud Platform: Part 2

44 codemag.com

Now that you’ve configured all APIs and libraries, let’s connect
the Laravel app that’s running on GAE to the cloud database.

Step 6: Configure Laravel App on GAE to Use
the Cloud Database
It’s time to configure your app running inside GAE to con-
nect to this cloud database. Start by locating and opening
the \app.yaml file at the root folder of the app.

Open the file and append the following settings under the
env_variables section:

 DB_DATABASE: db_1
 DB_USERNAME: root
 DB_PASSWORD:
 DB_SOCKET: '/cloudsql/INSTANCE_CONNECTION_NAME'

Replace the INSTANCE_CONNECTION_NAME with the real con-
nection name. Then, add a new section to the \app.yaml file:

beta_settings:
 cloud_sql_instances: 'INSTANCE_CONNECTION_NAME'

This enables GAE to establish a Unix domain socket with the
cloud database. You can read more about connecting to the
Cloud database from GAE here https://cloud.google.com/
sql/docs/mysql/connect-app-engine-flexible#php.

Commit and push your changes on GitHub. This triggers
the Google Cloud Build workflow to run and deploy a new
version of the app. Wait until the GCP deploys your app,
then access the editors’ view by following this URL: https://
prismatic-grail-323920.appspot.com/editors.

This URL opens the coding editors’ view. Start adding a few
coding editors to try out the database connection and make

You have successfully prepared the database and are ready
to accept new connections.

Step 5: Enable GCP APIs and Permissions
Before you can connect to the cloud database from within
the GAE, you need to enable a few libraries and add some
permissions.

Locate the following APIs and enable them in this order:

•	 Cloud SQL Admin API
•	 Google App Engine Flexible Environment

In Google Cloud, before using
a service, make sure to enable
its related APIs and Libraries.

To enable any API or Library on the GCP, on the left-side menu,
click the APIs and Services menu item. Then, once you’re on
the APIs and Service page, click the Library menu item. Search
for any API and enable it by clicking the ENABLE button.

In addition to enabling the two APIs, you need to add the
role of Cloud SQL Client for the GAE Service Account under
IAM and Admin section.

On the left-side menu, locate and click the IAM and Admin
menu item. Click the pencil icon to edit the account that
ends with @appspot.gserviceaccount.com and that has
the name of App Engine default service account. Figure 12
shows how to add the Cloud SQL Client role.

Figure 12: Adding the Cloud SQL Client role on the App Engine default user

Beginner’s Guide to Deploying PHP Laravel on the Google Cloud Platform: Part 2

https://cloud.google.com/sql/docs/mysql/connect-app-engine-flexible#php
https://prismatic-grail-323920.appspot.com/editors

45codemag.com

sail artisan make:controller SetupController \
 --invokable

An invokable controller is a single action controller that
contains an __invoke method to perform a single task.
Listing 5 shows the __invoke() function implementation.

sure all is working smoothly. Figure 13 shows the Editors’
view up and running on GCP.

You have successfully connected your Laravel app to the
Google Cloud SQL database. Let’s move on and enhance the
Google Cloud Build workflow.

Run Laravel Migrations inside
the Cloud Build Workflow
When you’re deploying your app to GAE, there’s almost no
easy way to access the underlying Docker container and run
your migrations. You need to automate this task as part of
the Cloud Build workflow.

One way to automate running Laravel migrations inside a
Cloud Build workflow is the following:

•	 Add a new controller endpoint in your app that can
run the Artisan migration command. You need to se-
cure this endpoint by authenticating the request and
making sure it’s coming solely from GCP. There are
ways to do so, as you will see later.

•	 Add a Cloud Build step to issue a curl (https://gist.
github.com/joyrexus/85bf6b02979d8a7b0308) POST
request to the endpoint from within the Cloud Build
workflow.

Step 1: Add a Controller Endpoint to Run the Migrations
Let’s start by adding a new invokable controller in Laravel
by running the following command:

public function __invoke(Request $request):
 \Illuminate\Http\Response
 {
 try {

 Log::debug('Starting: Run database migration');

 // run the migration
 Artisan::call('migrate',
 [
 '--force' => true
]
);

 Log::debug('Finished: Run database migration');

 } catch (\Exception $e)
 {
 // log the error
 Log::error($e);

 return response('not ok', 500);
 }

 return response('ok', 200);
 }

Listing 5: SetupController __invoke() method

Figure 13: Editors’ view up and running on GCP

Beginner’s Guide to Deploying PHP Laravel on the Google Cloud Platform: Part 2

https://gist.github.com/joyrexus/85bf6b02979d8a7b0308

46 codemag.com

The build step uses a container of the gcr.io/cloud-build-
ers/gcloud Docker image to run a curl command on a new
bash shell. To learn more about Google Cloud Build Steps,
check this resource https://cloud.google.com/build/docs/
build-config-file-schema.

The build step issues a POST curl request to a URL repre-
sented by $_APP_BASE_URL. The Google Cloud Build sub-
stitutes this variable with an actual value when it runs
the trigger. The value of this variable shall be the full app
/setup/ URL. You can learn more about Google Cloud Build
substitution here: https://cloud.google.com/build/docs/
configuring-builds/substitute-variable-values.

Step 3: Amend the Cloud Build Trigger to Pass Over
the _APP_BASE_URL
Visit the list of triggers under Google Cloud Build. Locate
the deploy-main-branch trigger and click to edit. Figure 14
shows how to edit a Google Cloud Build trigger.

Once on the Edit Trigger page, scroll to the bottom, locate,
and click the ADD VARIABLE button. This prompts you to
enter a variable name and value. Variable names should
start with an underscore. To use this same variable inside
the Google Cloud Build workflow, you need to prefix it with
a $ sign. At run time, when the trigger runs, GCP substi-
tutes the variable inside the Build workflow with the value
you’ve assigned on the trigger definition. Figure 15 shows
the _APP_BASE_URL variable together with its value.

Save the trigger and you’re ready to go!!

Step 4: Run and Test the Trigger
Before running the trigger, let’s make a new migration, for
example, to add a new description column on the editors
table.

Run the following command to generate a new migration
file:

sail artisan make:migration \
 add_description_column_on_editors_table

Listing 7 shows the entire migration file.

The function is simple. It calls the migrate command using
the Artisan::call() function call. It also does some logging
to trace whether this task runs or fails.

The next step is to add a new route inside the file \routes\
web.php as follows:

Route::post(
 '/setup/IXaOonJ3B7',
 '\App\Http\Controllers\SetupController'
);

I’m adding a random string suffix to the /setup/ URL, try-
ing to make it difficult to guess this route path. One final
step is to locate and open the \app\Http\Middleware\
VerifyCsrfToken.php file. Then, make sure to enlist the
/setup/ URL inside the $except array as follows:

protected $except = [
 'setup/IXaOonJ3B7'
];

This way, Laravel won’t do a CSRF token verification
(https://laravel.com/docs/8.x/csrf) when the /setup/ URL
GCP requests it.

Step 2: Amend Google Cloud Build to Run Migrations
Switch to \ci\cloudbuild.yaml and append a new Cloud Build
step to invoke the /setup/ URL from within the Build workflow.
Listing 6 shows the build step to invoke the /setup/ URL.

Figure 14: Edit the Google Cloud Build trigger.

 - name: 'gcr.io/cloud-builders/gcloud'
 entrypoint: "bash"
 args:
 - "-c"
 - |
 RESPONSE=$(curl -o /dev/null -s -w "%{http_code}" \
 -d "" -X POST $_APP_BASE_URL)
 if ["200" != "$$RESPONSE"];
 then
 echo "FAIL: migrations failed"
 exit 1;
 else
 echo "PASS: migrations ran successfully"
 fi

Listing 6: Invoke /setup/ inside Google Build file

Beginner’s Guide to Deploying PHP Laravel on the Google Cloud Platform: Part 2

https://cloud.google.com/build/docs/build-config-file-schema
https://cloud.google.com/build/docs/configuring-builds/substitute-variable-values

47codemag.com

Next time I see you, I’ll strengthen running the Laravel
migration by implementing an authentication layer with
Google Secret Manager.

In addition, deployments can go wrong sometimes and so
you should have a backup plan. As you will see in the next
article, you can take a backup snapshot of the Cloud data-
base every time you run the Build workflow. If anything goes
wrong, you can revert to an old backup of the database.

And much more… See you then!

The migration, when run, adds a new column on the editors
table inside the database.

Save your work by adding all the new changes to Git and
committing them to GitHub. This, in turn, triggers GCP to
run the associated Google Cloud Build workflow.

Eventually, a new version of the app will be deployed on
GCP. However, this time, the trigger will also POST to the /
setup/ URL to run the Laravel migrations as part of running
the Build workflow.

You can check the database to make sure the Build workflow
runs the Laravel migration and accordingly adds a new col-
umn to the editors table.

So far, the /setup/ URL isn’t authenticating the request
coming and ensuring that it’s coming from GCP only. In the
next part of this series, I’ll explore one option to secure and
authenticate your requests by using Google Secret Manager
(https://cloud.google.com/secret-manager).

Conclusion
This article was a continuation of the previous one by con-
necting your Laravel app to a local database. The next step
is to create a Google Cloud database and connect the app
to it when running inside GAE. Finally, you enhanced the
Google Cloud Build workflow to run the Laravel migrations
as part of the Build workflow itself.

Figure 15: Adding a new trigger variable

� Bilal Haidar
�

class AddColumnDescriptionOnEditorsTable extends Migration
{
 /**
 * Run the migrations.
 *
 * @return void
 */
 public function up()
 {
 Schema::table('editors', function($table) {
 $table->string('description', 255)->nullable();
 });
 }

 /**
 * Reverse the migrations.
 *
 * @return void
 */
 public function down()
 {
 Schema::table('editors', function($table) {
 $table->dropColumn('description');
 });
 }
}

Listing 7: Database migration file

Beginner’s Guide to Deploying PHP Laravel on the Google Cloud Platform: Part 2

codemag.com48 Working with Apache Kafka in ASP.NET 6 Core

ONLINE QUICK ID 2201061

Working with Apache Kafka
in ASP.NET 6 Core
Today’s enterprises need reliable, scalable, and high-performant distributed messaging systems for data exchange in real-time. There
are quite a few messaging systems out there, and Apache Kafka is one of them. It’s an open source, and versatile stream-processing
software that’s a high-throughput, low-latency messaging system for distributed applications, and it’s written in Java and Scala.

This article provides a deep dive on how to work with Apache
Kafka in ASP.NET 6 Core.

If you’re to work with the code examples discussed in this ar-
ticle, you should have the following installed in your system:

•	 Visual Studio 2022
•	 .NET 6.0
•	 ASP.NET 6.0 Runtime
•	 Apache Kafka
•	 Java Runtime Environment (JRE)
•	 7-zip

You can download and install 7-zip from here: https://
www.7-zip.org/download.html.

You can download JRE from here: https://www.java.com/
en/download/.

If you don’t already have Visual Studio 2022 installed in your
computer, you can download it from here: https://visualstudio.
microsoft.com/downloads/.

You can download Apache Kafka from here: https://kafka.
apache.org/downloads.

Introduction to Apache Kafka
Streaming data refers to data constantly produced by hundreds
of data sources, which often transmits the data records concur-
rently. A streaming platform must manage this continual influx
of data while still processing it sequentially and progressively.

Kafka is a publish/subscribe messaging platform with built-in
support for replication, partitioning, fault tolerance, and bet-
ter throughput. It’s an excellent choice for applications that
need large scale data processing. Kafka is mainly used to build
real-time streaming data pipelines. Kafka incorporates fault-
tolerant storage and stream processing capabilities to allow for
the storage and analysis of historical and real-time data.

Here’s the list of Apache Kafka features:

•	 It can publish and subscribe streams of data.
•	 It’s capable of handling a vast number of read/write

operations per second.

•	 It can persist data for a particular period.
•	 It has the ability to grow elastically with zero downtime.
•	 It offers support for replication, partitioning, and

fault-tolerance.

Why Should You Use Apache Kafka?
Scalability. Apache Kafka is highly scalable. It supports high-
performance sequential writes and separates topics into parti-
tions to facilitate highly scalable reads and writes. This helps
Kafka to enable multiple producers and consumers to read and
write at the same time. Additionally, because Kafka is distrib-
uted, you can scale up by adding new nodes to the cluster.

High throughput. Throughput is a measure of the number of
messages that arrive at a given point in time. Apache Kafka is
capable of handling massive volumes of incoming messages at
a high velocity per second (around 10K messages per second
or a maximum request size of one million bytes per request,
whichever comes first).

High performance. Apache Kafka can deliver messages at
high speed and high volumes. It provides high throughput
with low latency and high availability.

Highly reliable. Kafka is a fault-tolerant messaging system and is
adept at recovering from failures quickly. Kafka can replicate data
and handle many subscribers. In Apache Kafka, the messages are
durable even after they have been consumed. This enables the
Kafka Producer and Kafka Consumer to be available at different
times and increases resilience and fault tolerance. Kafka can load
balance consumers in the event of a failure. It is more reliable
than other messaging services such as RabbitMQ, AMQP, JMS, etc.

Low latency. Latency refers to the amount of time required
to process each message. Apache Kafka can provide high
throughput with low latency and high availability.

Durability. Kafka messages are highly durable because Kafka
stores the messages on the disk, as opposed to in memory.

Kafka vs. Traditional Messaging Systems
Kafka differs from traditional messaging queues in several
ways. Kafka retains a message after it has been consumed.
Quite the opposite, competitor RabbitMQ deletes messages
immediately after they’ve been consumed.

RabbitMQ pushes messages to consumers and Kafka fetches
messages using pulling.

Kafka can be scaled horizontally and traditional messaging
queues can scale vertically.

Joydip Kanjilal
joydipkanjilal@yahoo.com

Joydip Kanjilal is an MVP
(2007-2012), software
architect, author, and
speaker with more than
20 years of experience.
He has more than 16 years
of experience in Microsoft
.NET and its related
technologies. Joydip has
authored eight books,
more than 500 articles,
and has reviewed more
than a dozen books.

Take advantage of Apache Kafka
for high performance, scalable,
and reliable messaging in real-time.

https://www.7-zip.org/download.html
https://www.java.com/en/download/
https://visualstudio.microsoft.com/downloads/
https://kafka.apache.org/downloads

codemag.com 49Working with Apache Kafka in ASP.NET 6 Core

Typical Use Cases
Here are some use cases for Kafka:

•	 Messaging: Kafka acts as a message broker. A mes-
sage broker enables applications, services, and sys-
tems to communicate with one another and exchange
information. It can decouple processing from data
producers and store, validate, organize, route, and
deliver messages to appropriate destinations.

•	 Application activity tracking: Kafka was originally
developed to address application activity tracking. You
can leverage Kafka to publish all events (user login,
user registration, time spent by a logged in user, etc.)
that occur in your application to a dedicated Kafka top-
ic. Then you can have consumers subscribe to the topics
and process the data for monitoring, analysis, etc.

•	 Log aggregation: You can publish logs to Kafka topics and
then aggregate and process them when needed. Kafka can
collect logs from various services and make them available
to the consumers in a standard format (JSON).

•	 Real-time data processing: Today’s applications need
data to be processed as soon as it’s available. IoT
applications also need real-time data processing.

•	 Operational metrics: Kafka can aggregate the
statistical data collected from several distrib-
uted applications and then produce central-
ized feeds of operational data.

Components of the
Apache Kafka Architecture
The Apache Kafka architecture is comprised
of the following components:

•	 Kafka Topic: A Kafka topic defines a
channel for the transmission of data.
When the producers publish messages to
the topics, the consumers read messages
from them. A unique name identifies a
topic pertaining to a Kafka cluster. There’s
absolutely no limit to the number of topics
you can create in a cluster.

•	 Kafka Cluster: A Kafka cluster comprises one or
more servers or Kafka brokers. For high availabil-
ity, a Kafka cluster typically contains many brokers,
each of them having its own partition. Because they’re
stateless, ZooKeeper (see later in this list) is used to
manage the cluster state.

•	 Kafka Producer: A Kafka producer serves as a data
source for one or more Kafka topics and is responsible
for writing, optimizing, and publishing messages to
those topics. A Kafka producer can connect to a Kafka
cluster through Zookeeper. Alternatively, it can con-
nect to a Kafka broker directly.

•	 Kafka Consumer: A Kafka consumer consumes data
through reading messages on the topics they’ve sub-
scribed to. Incidentally, each Kafka consumer belongs
to a particular consumer group. A Kafka consumer
group comprises related consumers who share a com-
mon task. Kafka sends messages to the consumers
within the group from different partitions of a topic.

•	 Kafka ZooKeeper: A Kafka Zookeeper manages and
coordinates the Kafka brokers in a cluster. It also no-
tifies producers and consumers in a Kafka cluster of
the existence of new brokers or the failure of brokers.

codemag.com

Setting Up Apache Kafka
First off, download the Apache Kafka setup file from the
location mentioned earlier. Now switch to the Downloads
folder in your computer and install the downloaded files
one by one. Kafka is available as a zip file, so you must
extract the archive to the folder of your choice. Assuming
you’ve already downloaded and installed 7-zip and Java in
your computer, you can proceed with setting up and running
Apache Kafka.

Now follow the steps outlined below:

1.	 Switch to the Kafka config directory in your computer.
It is D:\kafka\config in my computer.

2.	 Open the file server.properties.
3.	 Find and replace the line “log.dirs=/tmp/kafka-logs”

with “log.dirs=D:/kafka/kafka-logs”, as shown in Fig-
ure 2.

4.	 Save and close the server.properties file.
5.	 Now open the file zookeeper.properties.
6.	 Find and replace the line “dataDir=/tmp/zookeeper” with

“dataDir=D:/kafka/zookeeper-data”, as shown in Figure 3.
7.	 Save and close the file

By default, Kafka runs on the default port 9092 in your
computer and connects to ZooKeeper at the default port
2181.

Switch to your Kafka installation directory and start Zoo-
keeper using the following command:

.\bin\windows\zookeeper-server-start.bat
 config\zookeeper.properties

Figure 4 is how it looks when Zookeeper is up and running
in your system:

Launch another command window and write the following
command in there to start Kafka:

.\bin\windows\
kafka-server-start.bat
config\server.properties

When Kafka is up and running in your system, it looks like
Figure 5.

•	 Kafka Broker: A Kafka broker acts as a middleman be-
tween producers and consumers, hosting topics and
partitions and enabling sending and receiving messag-
es between them. The brokers in a typical production
Kafka cluster can handle many reads/writes per second.
Producers and consumers don’t communicate directly.
Instead, they communicate using these brokers. Thus, if
one of the producers or consumers goes down, the com-
munications pipeline continues to function as usual.

Figure 1 illustrates a high-level Kafka architecture. A Kafka
cluster comprises one or more Kafka brokers. Although the
Producers push messages into the Kafka topics in a Kafka
broker, the Consumers pulls those messages off a Kafka
topic.

When Not to Use Kafka
Despite being the most popular messaging platform and
having several advantages, you should not use Kafka in any
of the following use cases:

•	 Kafka’s not a good choice if you need your messages
processed in a particular order. To process messages
in a specific order; you should have one consumer
and one partition. Instead, in Kafka, you have mul-
tiple consumers and partitions and so it isn’t an ideal
choice in this use case.

•	 Kafka isn’t a good choice if you only need to process a
few messages per day (maybe up to several thousand).
Instead, you can take advantage of traditional mes-
saging queues like RabbitMQ.

•	 Kafka is an overkill for ETL jobs when real-time pro-
cessing is required because it isn’t easy to perform
data transformations dynamically.

•	 Kafka is also not a good choice when you need a sim-
ple task queue. Instead, it would be best if you lever-
aged RabbitMQ here.

Kafka isn’t a replacement for a database, and it should
never be used for long-term storage. Because Kafka stores
redundant copies of data, it might be a costly affair as well.
When you need data to be persisted in a database for query-
ing, insertion, and retrieval, you should use a relational da-
tabase like Oracle, SQL Server, or a non-relational database
like MongoDB.

50 Working with Apache Kafka in ASP.NET 6 Core

Figure 1: A high-level view of the components of the Kafka architecture

codemag.com

Figure 2: Setting up Apache Kafka. Specifying the logs directory

Figure 3: Setting up Apache Kafka: Specifying the data directory

Create Topic(s)
Now that Zookeeper and Kafka are both up and running,
you should create one or more topics. To do this, follow the
steps outlined below:

Launch a new command prompt window. Type the following
command in there and press enter:

kafka-topics.bat --create --zookeeper
 localhost:2181 --replication-factor 1
 --partitions 1 --topic test

51Working with Apache Kafka in ASP.NET 6 Core

You can list all topics in a cluster using the following com-
mand:

.\bin\windows\kafka-topics.bat --list
 --zookeeper localhost:2181

Working with Apache Kafka
in ASP.NET Core 6
In this section, you’ll implement a simple Order Processing
application. You’ll build two applications: the producer ap-

codemag.com

plication and the consumer application. Both of these ap-
plications will be created using ASP.NET 6 in Visual Studio
2022 IDE.

Create a New ASP.NET 6 Project in Visual Studio 2022
Let’s start building the producer application first. You can
create a project in Visual Studio 2022 in several ways. When
you launch Visual Studio 2022, you’ll see the Start window.
You can choose “Continue without code” to launch the main
screen of the Visual Studio 2022 IDE.

To create a new ASP.NET 6 Project in Visual Studio 2022:

1.	 Start the Visual Studio 2022 Preview IDE.
2.	 In the “Create a new project” window, select “ASP.NET

Core Web API” and click Next to move on.

3.	 Specify the project name as ApacheKafkaProducerDemo
and the path where it should be created in the “Config-
ure your new project” window.

4.	 If you want the solution file and project to be cre-
ated in the same directory, you can optionally check
the “Place solution and project in the same directory”
checkbox. Click Next to move on.

5.	 In the next screen, specify the target framework and
authentication type as well. Ensure that the “Configure
for HTTPS,” “Enable Docker Support,” and the “Enable
OpenAPI support” checkboxes are unchecked because
you won’t use any of these in this example.

6.	 Click Create to complete the process.

Follow the same steps outlined above to create another ASP.
NET Core 6 Web API project. Name this project ApacheKafka-

52 Working with Apache Kafka in ASP.NET 6 Core

Figure 5: Kafka is up and running at the default port 9092.

Figure 4: Zookeeper is up running at the default port 2181

codemag.com

ConsumerDemo. Note that you can also choose any mean-
ingful name for both these projects.

You now have two ASP.NET Core 6 Web API projects: Apache-
KafkaProducerDemo and the ApacheKafkaConsumerDemo.

Install NuGet Package(s)
So far so good. The next step is to install the necessary
NuGet Package(s). To produce and consume messages, you
need a client for Kafka. Use the most popular client: Conflu-
ent’s Kafka .NET Client. To install the required packages into
your project, right-click on the solution and select “Manage
NuGet Packages for Solution...”. Then type Confluent.Kafka
in the search box, select the Confluent.Kafka package, and
install it. You can see the appropriate screen in Figure 7.

Alternatively, you can execute the following command in
the Package Manager Console:

PM> Install-Package Confluent.Kafka

Now you’ll create the classes and interfaces for the two ap-
plications.

Building the ApacheKafkaProducerDemo Application
Create a class named OrderRequest in a file named Order-
Request.cs with the following code in there:

namespace ApacheKafkaProducerDemo
{
 public class OrderRequest
 {
 public int OrderId { get; set; }
 public int ProductId { get; set; }
 public int CustomerId { get; set; }
 public int Quantity { get; set; }
 public string Status { get; set; }
 }
}

Create a new controller named ProducerController in the
ApacheKafkaProducerDemo application with the code found
in Listing 1 in it.

53Working with Apache Kafka in ASP.NET 6 Core

Figure 6: Installing Confluent.Kafka NuGet Package

using Confluent.Kafka;
using Microsoft.AspNetCore.Mvc;
using System;
using System.Net;
using System.Text.Json;
using System.Threading.Tasks;
using System.Diagnostics;

namespace ApacheKafkaProducerDemo.Controllers {
 [Route("api/[controller]")]
 [ApiController]
 public class ProducerController: ControllerBase {
 private readonly string
 bootstrapServers = "localhost:9092";
 private readonly string topic = "test";

 [HttpPost]
 public async Task <IActionResult>
 Post([FromBody] OrderRequest orderRequest) {
 string message = JsonSerializer.Serialize
 (orderRequest);
 return Ok(await SendOrderRequest(topic, message));
 }
 private async Task < bool > SendOrderRequest
 (string topic, string message) {
 ProducerConfig config = new ProducerConfig {
 BootstrapServers = bootstrapServers,
 ClientId = Dns.GetHostName()
 };

 try {
 using(var producer = new ProducerBuilder
 <Null, string> (config).Build()) {
 var result = await producer.ProduceAsync
 (topic, new Message <Null, string> {
 Value = message
 });

 Debug.WriteLine($"Delivery Timestamp:
 {result.Timestamp.UtcDateTime}");
 return await Task.FromResult(true);
 }
 } catch (Exception ex) {
 Console.WriteLine($"Error occured: {ex.Message}");
 }

 return await Task.FromResult(false);
 }
 }
}

Listing 1: Create a new API Controller

codemag.com

Next,you’ll create a hosted service to consume the mes-
sages. Create a class named ApacheKafkaConsumerService
in another new file having the same name with a .cs exten-
sion, as found in Listing 2. This class should extend the
IHostedService interface.

Register the Hosted Service
You should register the hosted service in the ConfigureSer-
vices method, as shown in the code snippet given below:

public void ConfigureServices
 (IServiceCollection services)
 {
 services.AddSingleton
 <IHostedService,
 ApacheKafkaConsumerService>();

Building the ApacheKafkaConsumerDemo Application
Create a new class named OrderProcessingRequest in a file
having the same name and a .cs extension with the follow-
ing content in it:

namespace ApacheKafkaConsumerDemo
{
 public class OrderProcessingRequest
 {
 public int OrderId { get; set; }
 public int ProductId { get; set; }
 public int CustomerId { get; set; }
 public int Quantity { get; set; }
 public string Status { get; set; }
 }
}

54 Working with Apache Kafka in ASP.NET 6 Core

Figure 8: The breakpoint in the Producer application is hit

Figure 7: Send a POST request to the Producer application.

codemag.com

they are part of different solutions. To run the application,
follow these steps:

1.	 Execute the producer application.
2.	 Execute the consumer application.
3.	 Launch the Postman Http Debugger tool.
4.	 Send an HTTP POST request to the producer API using

Postman, as shown in Figure 8.

 services.AddControllers();
 }

Execute the Application
Set appropriate breakpoints in the source code of both ap-
plications so that you can debug them. You should run the
producer and the consumer applications separately because

55Working with Apache Kafka in ASP.NET 6 Core

Figure 9: Displaying the Order ID of the order being processed in the Output window

using Confluent.Kafka;
using Microsoft.Extensions.Hosting;
using System;
using System.Text.Json;
using System.Threading;
using System.Threading.Tasks;
using System.Diagnostics;

namespace ApacheKafkaConsumerDemo {
 public class ApacheKafkaConsumerService:
 IHostedService {
 private readonly string
 topic = "test";
 private readonly string
 groupId = "test_group";
 private readonly string
 bootstrapServers = "localhost:9092";

 public Task StartAsync
 (CancellationToken cancellationToken) {
 var config = new ConsumerConfig {
 GroupId = groupId,
 BootstrapServers = bootstrapServers,
 AutoOffsetReset = AutoOffsetReset.Earliest
 };

 try {
 using(var consumerBuilder =
 new ConsumerBuilder <Ignore, string>
 (config).Build()) {
 consumerBuilder.Subscribe(topic);

 var cancelToken =
 new CancellationTokenSource();

 try {
 while (true) {
 var consumer =
 consumerBuilder.Consume
 (cancelToken.Token);
 var orderRequest =
 JsonSerializer.Deserialize
 <OrderProcessingRequest>
 (consumer.Message.Value);
 Debug.WriteLine($"Processing Order Id:
 {orderRequest.OrderId}");
 }
 } catch (OperationCanceledException) {
 consumerBuilder.Close();
 }
 }
 } catch (Exception ex) {
 System.Diagnostics.Debug.WriteLine(ex.Message);
 }

 return Task.CompletedTask;
 }
 public Task StopAsync(CancellationToken
 cancellationToken) {
 return Task.CompletedTask;
 }
 }
}

Listing 2: Create an ApacheKafkaConsumer Service class

codemag.com56 Working with Apache Kafka in ASP.NET 6 Core

Figure 9 illustrates that the breakpoint has been hit in the
producer application. Note the Timestamp value displayed
in the Output window.

When you press F5, the breakpoint set in the consumer ap-
plication will be hit and you can see the message displayed
in the Output window, as shown in Figure 10.

Kafka CLI Administration
In this section we’ll examine how we can perform a few ad-
ministration tasks in Kafka.

Shut Down Zookeeper and Kafka
To shut down Zookeeper, use the zookeeper-server-stop.bat
script, as shown below:

bin\windows\zookeeper-server-stop.bat

To shut down Kafka, you should use the kafka-server-stop.
bat script as shown below:

bin\windows\kafka-server-stop.bat

Display All Kafka Messages in a Topic
To display all messages in a particular topic, use the follow-
ing command:

.\bin\windows\
kafka-console-consumer.bat

� Joydip Kanjilal
�

--bootstrap-server
localhost:9092 --topic
test --from-beginning

Where Should I Go from Here
Kafka is a natural choice if you’re willing to build an ap-
plication that needs high performant, resilient, and scal-
able messaging. This post walked you through building a
simple Kafka producer and consumer using ASP.NET 6. Note
that you can set up Apache Kafka using Docker as well. You
can know more about Apache Kafka from the Apache Kafka
Documentation.

Figure 10: Displaying all messages in a topic

If you need a messaging system
that’s high-performant, resilient,
and scalability, you’ll be thrilled
with Apache Kafka.

57codemag.com

ONLINE QUICK ID 2201071

The Secrets of Manipulating CSV Files

Rod Paddock
rodpaddock@dashpoint.com

Rod Paddock founded Dash
Point Software, Inc. in
2001 to develop high-
quality custom software
solutions. With 30+ years
of experience, Rod’s current
and past clients include:
Six Flags, First Premier
Bank, Microsoft, Calamos
Investments, The US Coast
Guard, and US Navy. Along
with developing software,
Rod is a well-known author
and conference speaker.
Since 1995, Rod has given
talks, training sessions,
and keynotes in the US,
Canada, and Europe. Rod
has been Editor-in-Chief of
CODE Magazine since 2001.

The Secrets of Manipulating CSV Files
It’s 2022 and one of the most common file types I deal with on nearly a daily basis is the CSV file. If you told me this just a few
short years ago, I would have told you: “The 80s called and they want their file format back.” And yet here we are in the second
decade of the 21st century and I DO deal with CSV more frequently than I would have ever expected. First, let’s discuss just what

CSV files are. Comma Separated Files (CSV) are text files that con-
tain multiple records (rows), each with one or more elements (col-
umns) separated by a comma character. Actually, the elements
can be separated by any type of delimiter, not only a comma. For
instance, another common file format is the Tab Separated Value
(TSV) file where every element is separated by a tab character.

The 80s called and they want
their file format back.

So why is there this sudden demand for skills when dealing
with CSV files? As The Dude would say: It’s the science, man.
And by that, I mean the Data Science. In our current state of
development, we deal with huge quantities of data, and often
this data is shared between organizations. CSV files present
a unique set of opportunities for sharing large quantities of
data as they’re dense and contain little of the wasted content
that’s commonly found in JSON or XML files. They also com-
press rather nicely, which lowers bandwidth uses. Figure 1
shows an example of a simple CSV file containing movie data.

By the end of this article, you’ll be intimately familiar with
this data. You’ll learn how to read, write, and format Visual
Studio files based on this data.

Movie Data Sample
As stated above, this article will be all about reading and
writing movie data formatted in various CSV formats. The
following class code represents the data:

public class Movie
{
 public string Name { get; set; } = "";
 public string Director { get; set; } = "";
 public DateTime DateReleased { get; set; }
 public decimal
 BoxOfficeGross { get; set; } = 0.0m;
}

public static List<Movie> GetMovies()
{
 var movies = new List< Movie >();

 movies.Add(new Movie (){Name =
 "American Graffiti",
 Director = "George Lucas",
 DateReleased = new DateTime(1977,5,23),
 BoxOfficeGross = 123456});

 movies.Add(new Movie () { Name = "Star Wars",
 Director = "George Lucas",
 DateReleased = new DateTime(1977, 5, 23),

 BoxOfficeGross = 123456 });

 movies.Add(new Movie () { Name =
 "Empire Strikes Back",
 Director = "Irving Kirshner",
 DateReleased = new DateTime(1977, 5, 23),
 BoxOfficeGross = 123456 });

 movies.Add(new Movie (){ Name =
 "Return of the Jedi",
 Director = "Richard Marquand",
 DateReleased = new DateTime(1977, 5, 23),
 BoxOfficeGross = 123456
 });
 return movies;
}

Introducing CSVHelper
A few years ago, my team began building a Data Analytics
platform for our Data Scientists to use. The data was hosted
in a platform called Snowflake that uses CSV files as a mech-
anism for loading data into their cloud services. When this
need arose, I did what all good developers do: I searched for
a tool that would help me deal with CSV files.

This is where I came across a .NET library called CSVHelper.
This open-source tool, written by developer Josh Close (any
many others), is simple to use yet powerful enough to deal
with many data types of CSV scenarios that have presented
themselves over the years.

Getting up and running with CSVHelper is simple. The fol-
lowing steps demonstrate how to bootstrap a .NET applica-
tion capable of manipulating CSV files.

Bootstrapping CSVHelper
There are only two step to bootstrapping CSVHelper:

1.	 Create a new Console Application
2.	 Install CSVHelper via the NuGet Package Manager Con-

sole using the following command:

Install-Package CsvHelper

Now you’re ready to begin manipulating CSV files.

Figure 1: Sample movie data in CSV format

58 codemag.comThe Secrets of Manipulating CSV Files

When you examine this code, take notice of the following items:

•	 The code creates a CSVConfiguration object. This ob-
ject will be used to control the output of your CSV file.

•	 The file opens a StreamWriter that controls where your
file will be written.

•	 The code then creates a CSVWriter object passing in
the configuration object. This Writer sends your data
to the stream opened by the writer using the passed-
in configuration settings.

•	 Finally, the call to WriteRecords routine takes an IEnu-
marable collection and writes to the CSV fille.

The output of this set of code can be found in Figure 2.

Configuring Writer Options
As stated earlier, the CSVWriter accepts a configuration ob-
ject that’s used to control output options. A few of the key
options will be covered next.

Header Column
You may or may not want to include a header file in your
CSV files. By default, CSVHelper adds the name of your class’
properties in a header row. You can turn off the header by
setting it with the following code:

config.HasHeaderRecord = false;

Figure 3 shows the results of this option.

Changing Delimiters
One of the more common options is the delimiter used between
each data element. By default, CSVHelper delimits data comma
characters. The following three examples show how you can
change the delimiter to the PIPE, TAB, and a “crazy” delimiter.

•	 Changing the delimiter to PIPE:

config.Delimiter = "|";

Figure 4 shows the PIPE delimiter in action.

•	 Changing the delimiter to TAB:

config.Delimiter = "\t";

Figure 5 shows the TAB delimiter in action.

•	 Creating a “Crazy” delimiter (This is just to demon-
strate that your delimiter can be anything you desire):

config.Delimiter = "[[YES_IM_A_DELIMETER]]";

Figure 6 shows the “Crazy” delimiter doing its thing.

Quote Delimiting
I’ve found in many situations that my data needs to have
each data element wrapped in quotation marks. This is
especially true when your data contains delimiters within
their fields, e.g., commas. CSVHelper allows you to quote-
delimit your data using the following options.

config.ShouldQuote = args => true;

Figure 7 shows the CSV with quoted content.

Writing CSV Files
Once you’ve created your basic project, you can start by out-
putting a collection of data to a CSV file. The following code
demonstrates the simplest mechanism for writing a collec-
tion of movie records to a CSV file.

public static void WriteCsvFile(
List<Movie> dataToWrite, string outputFile)
{
 var config =
 new CsvConfiguration(
 CultureInfo.InvariantCulture);

 using (var writer =
 new StreamWriter(outputFile))
 using (var csv =
 new CsvWriter(writer, config))
 {
 csv.WriteRecords(dataToWrite);
 }
}

Figure 2: Movie Data Output as CSV file.

Figure 3: A CSV file with no header

Figure 4: The CSV file with PIPE delimiter

Figure 5: The CSV file with TAB delimiter

59codemag.com The Secrets of Manipulating CSV Files

Figure 8 shows the CSV file with two columns.

You can also use a class map to reorder your output

public class MovieOutputClassMap
 : ClassMap<Movie>
 {
 public MovieOutputClassMap()
 {
 Map(m => m.Name);
 Map(m => m.DateReleased);
 Map(m => m.Director);
 Map(m => m.BoxOfficeGross);
 }
 }

Figure 9 shows the CSV file with its columns reordered.

Along with altering the number of columns exported and
changing the ordinal position of them, you can also control
the text that’s emitted into the CSV stream. Altering the
output (and input) is done using a class that implements
the ITypeConverter interface.

The code below demonstrates creating a type converter that
alters the output of the DateReleased property removing the
time component.

This code receives the property’s value and returns a string
using the ConvertToString aspect of the type converter.
There’s also a corollary for reading these values from strings
via an implementation of the ConvertFromString function.

Formatting Output with Map Classes
Another very handy tool is the ability to control the output
sent to your file. By default, CSVHelper outputs elements by
reflecting on the class they come from and creating columns
for each property. There are many situations where you may
want to export a limited set of properties or you wish to
change the order of the output files.

This is where mapping classes come in. When exporting data
CSVHelper can accept a mapping object derived from the
ClassMap class. The following code demonstrates a ClassMap
that limits the data exported to two properties.

public class MovieOutputClassMap
 : ClassMap<Movie>
{
 public MovieOutputClassMap()
 {
 Map(m => m.Name);
 Map(m => m.DateReleased);

 }
}

Once you’ve built your class map, you need to apply it to
your writer. This is done using two commands. The first one
creates an instance of your class map.

var classMap = new MovieOutputClassMap();

The second registers it with the writer Context property:

csv.Context.RegisterClassMap(classMap);

The full writer code is shown below:

public static void
 WriteCsvFile(List<Movie> dataToWrite,
 string outputFile)
{
var config =
 new CsvConfiguration(CultureInfo.InvariantCulture);

 //include header
 config.HasHeaderRecord = false;

 //change delimiter
 config.Delimiter = "|";

 //quote delimit
 config.ShouldQuote = args => true;

 //changing the order of fields
 var classMap = new MovieOutputClassMap();

 using (var writer =
 new StreamWriter(outputFile))

 using (var csv =
 new CsvWriter(writer, config))
 {
 csv.Context.RegisterClassMap(classMap);
 csv.WriteRecords(dataToWrite);
 }
}

Figure 6: The CSV file with the CRAZY delimiter

Figure 7: The CSV file with quoted content

Figure 8: CSV file with only two columns exported

60 codemag.com

When you examine this set of code for reading files, take
notice of the following items:

•	 The code creates a CSVConfiguration object. This ob-
ject is used to control how the reader manipulated
your CSV data as it was read.

•	 The file opens a StreamReader, which controls where
your file will be read from.

•	 The code then creates a CSVReader object passing in
the configuration object. This reader is used to iterate
through your CSV file one record at a time.

•	 The code iterates the file using the Read() function,
which moves down the file one record at a time. Note
that the code does a Read() immediately, to skip the
record header.

•	 Finally, the code uses various Getter functions to read
data from each column.

public static List<Movie>
 ManualReadCsvFile(string inputFile)
{

 var retval = new List<Movie>();
 var config = new CsvConfiguration(
 CultureInfo.InvariantCulture);

 using (var reader =
 new StreamReader(inputFile))

 using (var csv =
 new CsvReader(reader, config))
 {
 //skip the header
 csv.Read();
 while (csv.Read())
 {
 var movie = new Movie();
 movie.Name = csv.GetField(0);
 movie.Director = csv.GetField(1);
 movie.DateReleased
 =csv.GetField<DateTime>(2);
 movie.BoxOfficeGross
 =csv.GetField<decimal>(3);
 retval.Add(movie);
 }
 }
 return retval;
}

Another and much simpler way to read a file is to use
CSVHelper’s built-in mechanism for iterating through a
file automatically transforming CSV records into to .NET
classes.

public class DateOutputConverter : ITypeConverter
{
 public object ConvertFromString(string text,
 IReaderRow row, MemberMapData memberMapData)
 {
 throw new NotImplementedException();
 }
 public string ConvertToString(
 object value,
 IWriterRow row,
 MemberMapData memberMapData)
 {
 var retval =
 ((DateTime) value).ToString("d");
 return retval;
 }
 }

Once you’ve created your converter, you attach it to your
column via the mapping class. The following code shows
how to attach a converter to a property map.

public class MovieOutputClassMap :
 ClassMap<Movie>
{
 public MovieOutputClassMap()
 {
 Map(m => m.Name);
 Map(m => m.DateReleased).TypeConverter(new
 DateOutputConverter());
 Map(m => m.Director);
 Map(m => m.BoxOfficeGross);
 }

Figure 10 shows the CSV file with the date formatting al-
tered.

Reading CSV Files
Now that you have a basic understanding of writing CSV
files, you can turn your sights to reading CSV files. There
are two primary mechanisms for reading a file. The first is
to open the file and iterate through it one record at a time.

Figure 10: The CSV file with the date formatting altered

Figure 9: The CSV file columns reordered

The Secrets of Manipulating CSV Files

61codemag.com

public static List<Movie> ReadCsvFile(
 string inputFile)
{
 var retval = new List<Movie>();
 var config =
 new CsvConfiguration(CultureInfo.InvariantCulture);

 var classMap = new MovieInputClassMap();

 using (var reader =
 new StreamReader(inputFile))

 using (var csv =
 new CsvReader(reader, config))
 {
 csv.Context.RegisterClassMap(classMap);
 retval.AddRange(csv.GetRecords<Movie>());
 }

 return retval;
 }

Conclusion
As you can see, using CSVHelper greatly simplifies the pro-
cess of reading and writing CSV files. This library has a good
balance of simple-to-use yet very capable tools. I highly rec-
ommend exploring more capabilities of this object.

So now you may be asking yourself how you can exploit
these tools and techniques in the Data Science space. Well,
that’s where the next article comes in. In a future article,
I’ll demonstrate streaming this data into Snowflake via an
S3 bucket and how to bulk-load data into Postgres using the
same tools. Thanks for exploring the non-glamorous world
of CSV files with me.

When you examine this set of code for reading files, take
notice of the following items:

•	 The code creates a CSVConfiguration object. This ob-
ject is used to control how the reader manipulated
your CSV data as it was read.

•	 The file opens a StreamReader, which controls where
your file will be read from.

•	 The code then creates a CSVReader object passing in
the configuration object. This reader is used to iterate
through your CSV file one record at a time.

•	 The code then reads all the records using the
GetRecords<T> method. This function returns an IEnu-
merable collection.

•	 The collection is then added to the functions return
value via the AddRange() method.

public static List<Movie> ReadCsvFile(
 string inputFile)
{
var retval = new List<Movie>();
var config =
 new CsvConfiguration
 (CultureInfo.InvariantCulture);

 using (var reader =new StreamReader(inputFile))
 using (var csv =
 new CsvReader(reader, config))
 {
 retval.AddRange(csv.GetRecords<Movie>());
 }
 return retval;
 }

As you can see, this style of code is much simpler to deal with.

You can also use class maps to change the order of how CSV
elements are read from your CSV file and are applied to the
returned object’s properties. The following class map reads
content from the CSV created earlier in this article. Notice
the column order.

public class MovieInputClassMap : ClassMap<Movie>
 {
 public MovieInputClassMap()
 {
 Map(m => m.Name);
 Map(m => m.DateReleased);
 Map(m => m.Director);
 Map(m => m.BoxOfficeGross);
 }
 }

The code used to attach a class map is exactly like the writer.
You simply create an instance of the class map and apply it
to the CSVReader’s Context property:

� Rod Paddock
�

The Secrets of Manipulating CSV Files

Simple code is always better,
both while you’re writing it and
when you come back to it later.

62 codemag.com

ONLINE QUICK ID 2201081

Minimal APIs in .NET 6

Minimal APIs in .NET 6
Building REST APIs has become central to many development projects. The choice for building those projects is wide, but
if you’re a C# developer, the options are more limited. Controller-based APIs have been the most common for a long time,
but .NET 6 changes that with a new option. Let’s talk about it.

How’d We Get Here?
Connecting computers has been a problem since the first
steps of distributed computing some fifty years ago (see Fig-
ure 1). Yeah, that makes me feel old too. Remote Procedure
Calls were as important as APIs in modern development. With
REST, OData, GraphQL, GRPC, and the like, we have a lot of
options to create ways of communicating between apps.

Although lots of these technologies are thriving, using REST
as a way of communicating is still a stalwart in today’s de-
velopment world. Microsoft has had a number of solutions
for creating REST APIs over the years, but for the past de-
cade or so, Web API has been the primary tool. Based on the
ASP.NET MVC framework, Web API was meant to treat REST
verbs and nouns as first-class citizens. Being able to create
a class that represents a surface area (often tied to a “noun”
in the REST sense) that’s tied together with a routing library
is still a viable way to build APIs in today’s world.

One of the drawbacks to the Web API framework (e.g., Con-
trollers), is that there’s a bit of ceremony involved for small
APIs (or microservices). For example, Controllers are classes
that represent one or more possible calls to an API:

[Route("api/[Controller]")]
[Authorize(AuthenticationSchemes =
 JwtBearerDefaults.AuthenticationScheme)]
public class OrdersController : Controller
{
 readonly IDutchRepository _repository;
 readonly ILogger<OrdersController> _logger;
 readonly IMapper _mapper;
 readonly UserManager<StoreUser> _userManager;

 public OrdersController(
 IDutchRepository repository,
 ILogger<OrdersController> logger,
 IMapper mapper,
 UserManager<StoreUser> userManager)
 {
 _repository = repository;
 _logger = logger;
 _mapper = mapper;
 _userManager = userManager;
 }

 [HttpGet]
 public IActionResult Get(
 bool includeItems = true)
 {
 try
 {
 var username = User.Identity.Name;

 var results = _repository
 .GetOrdersByUser(username,
 includeItems);

 return Ok(_mapper
 .Map<IEnumerable<OrderViewModel>>(
 results));
 }
 catch (Exception ex)
 {
 _logger.LogError($"Failed : {ex}");
 return BadRequest($"Failed");
 }
 }
 ...

This code is typical of Web API Controllers. But does that
mean it’s bad? No. For larger APIs and ones that have ad-
vanced needs (e.g., rich authentication, authorization, and
versioning), this structure works great. But for some proj-
ects, a simpler way to build APIs is really needed. Some of
this pressure is coming from other frameworks where build-
ing APIs feels smaller, but it’s also driven by wanting to be
able to design/prototype APIs more quickly.

This need isn’t all that new. In fact, the Nancy framework
(https://github.com/NancyFx/Nancy) was a C# solution for
mapping APIs calls way back then (although it’s deprecated
now). Even newer libraries like Carter (https://github.com/
CarterCommunity/Carter) are trying to accomplish the same
thing. Having efficient and simple ways to create APIs is a
necessary technique. You shouldn’t take Minimal APIs as the
“right” or “wrong” way to build APIs. Instead, you should
see it as another tool to build your APIs.

Enough talk, let’s dig into how it works.

What Are Minimal APIs?
The core idea behind Minimal APIs is to remove some of the
ceremony of creating simple APIs. It means defining lambda
expressions for individual API calls. For example, this is as
simple as it gets:

app.MapGet("/", () => "Hello World!");

This call specifies a route (e.g., “/”) and a callback to execute
once a request that matches the route and verb are matched.
The method MapGet is specifically to map a HTTP GET to the
callback function. Much of the magic is in the type inference
that’s happening. When we return a string (like in this ex-
ample), it’s wrapping that in a 200 (e.g., OK) return result.

How do you even call this? Effectively, these mapping meth-
ods are exposed. They’re extension methods on the IEnd-
pointRouteBuilder interface. This interface is exposed by
the WebApplication class that’s used to create a new Web
server application in .NET 6. But I can’t really dig into this
without first talking about how the new Startup experience
in .NET 6 works.

Shawn Wildermuth
shawn@wildermuth.com
wildermuth.com
twitter.com/shawnwildermut

Shawn Wildermuth has
been tinkering with com-
puters and software since
he got a Vic-20 back in the
early ’80s. As a Microsoft
MVP since 2003, he’s also
involved with Microsoft
as an ASP.NET Insider and
ClientDev Insider. He’s
the author of over twenty
Pluralsight courses, written
eight books, an interna-
tional conference speaker,
and one of the Wilder
Minds. You can reach
him at his blog at
http://wildermuth.com.
He’s also making his first,
feature-length documentary
about software developers
today called “Hello World:
The Film.” You can see
more about it at
http://helloworldfilm.com.

https://twitter.com/shawnwildermut
www.wildermuth.com
https://github.com/CarterCommunity/Carter

63codemag.com Minimal APIs in .NET 6

Routing
The first thing you might notice is that the pattern for
mapping API calls looks a lot like MVC Controllers’ pattern
matching. This means that Minimal APIs look a lot like con-
troller methods. For example:

app.MapGet("/api/clients", () => new Client()
{
 Id = 1,
 Name = "Client 1"
});

app.MapGet("/api/clients/{id:int}",
 (int id) => new Client()
{
 Id = id,
 Name = "Client " + id
});

Simple paths like the “/api/clients” point at simple URI
paths, whereas using the parameter syntax (even with
constraints) continues to work. Notice that the callback
can accept the ID that’s mapped from the URI just like MVC
Controllers. One thing to notice in the lambda expression is
that the parameter types are inferred (like most of C#). This
means that because you’re using a URL parameter (e.g., id),
you need to type the first parameter. If you didn’t type it, it
would try to guess the type in the lambda expression:

app.MapGet("/api/clients/{id:int}",
 (id) => new Client()
{
 Id = id, // Doesn't Work
 Name = "Client " + id
});

This doesn’t work because without the hint of type, the first
parameter of the lambda expression is assumed to be an
instance of “HttpContext”. That’s because, at its lowest
level, you can manage your own response to any request
with the context object. But for most of you, you’ll use the
parameters of the lambda expression to get help in mapping
objects and parameters.

Using Services
So far, the APIs calls you’ve seen aren’t anything like real
world. In most of those cases, you want to be able to use
common services to execute calls. This brings me to how to
use Services in Minimal APIs. You may have noticed earlier
that I’d left a space to register services before I built the
WebApplication:

The New Startup Experience
A lot has been written about the desire to take the boil-
erplate out of the startup experience in C# in general. To
this end, Microsoft has added something called “Top Level
Statements” to C# 10. This means that the program.cs that
you rely on to start your Web applications don’t need a void
Main() to bootstrap the app. It’s all implied. Before C# 10,
a startup looked something like this:

using Microsoft.AspNetCore.Hosting;
using Microsoft.Extensions.Hosting;

namespace Juris.Api
{
 public class Program
 {
 public static void Main(string[] args)
 {
 CreateHostBuilder(args).Build().Run();
 }

 public static IHostBuilder
 CreateHostBuilder(string[] args) =>
 Host.CreateDefaultBuilder(args)
 .ConfigureWebHostDefaults(webBuilder =>
 {
 webBuilder.UseStartup<Startup>();
 });
 }
}

The need for a class and a void Main method that bootstraps
the host to start the server is how we’ve been writing ASP.NET
in the .NET Core way for a few years now. With top-level state-
ments, they want to streamline this boilerplate, as seen below:

var builder = WebApplication.CreateBuilder(args);

// Setup Services

var app = builder.Build();

// Add Middleware

// Start the Server
app.Run();

Instead of a Startup class with places to set up services and
middleware, it’s all done in this very simple top-level pro-
gram. What does this have to do with Minimal APIs? The
app that the builder object builds supports the IEndpoint-
RouteBuilder interface. So, in our case, the set up to the
APIs is just the middleware:

var builder = WebApplication.CreateBuilder(args);

// Setup Services

var app = builder.Build();

// Map APIs
app.MapGet("/", () => "Hello World!");

// Start the Server
app.Run();

Let’s talk about the individual features here.

Figure 1: History of APIs

64 codemag.com

app.MapPut("/clients/{id}",
 async (int id,
 ClientModel model,
 IJurisRepository repo) =>
 {
 // ...
 });

For other verbs, you need to handle mapping of other verbs
using MapMethods:

app.MapMethods("/clients", new [] { "PATCH" },
 async (IJurisRepository repo) => {
 return await repo.GetClientsAsync();
 });

Notice that the MapMethods method takes a path, but also
takes a list of verbs to accept. In this case, I’m executing
this lambda expression when a PATCH verb is received. Al-
though you’re creating APIs separately, most of the same
code that you’re familiar with will continue to work. The
only real change is how the plumbing finds your code.

Using HTTP Status Codes
In these examples, so far, you haven’t seen how to handle
different results of an API action. In most of the APIs I
write, I can’t assume that it succeeds, and throwing excep-
tions isn’t the way that I want to handle failure. To that end,
you need a way of controlling what status codes to return.
These are handled with the Results static class. You simply
wrap your result with the call to Results and the status code:

app.MapGet("/clients",
 async (IJurisRepository repo) => {
 return Results.Ok(
 await repo.GetClientsAsync());
 });

Results supports most status codes you’ll need, like:

•	 Results.Ok: 200
•	 Results.Created: 201
•	 Results.BadRequest: 400
•	 Results.Unauthorized: 401
•	 Results.Forbid: 403
•	 Results.NotFound: 404
•	 Etc.

In a typical scenario, you might use several of these:

app.MapGet("/clients/{id:int}",
 async (int id, IJurisRepository repo) => {

 try {
 var client = await repo.GetClientAsync(id);
 if (client == null)
 {
 return Results.NotFound();
 }
 return Results.Ok(client);
 }
 catch (Exception ex)
 {
 return Results.BadRequest("Failed");
 }
 });

var bldr = WebApplication.CreateBuilder(args);

// Register Services Here

var app = bldr.Build();

You can just use the builder object to access the services, like so:

var bldr = WebApplication.CreateBuilder(args);

// Register Services
bldr.Services.AddDbContext<JurisContext>();
bldr.Services.AddTransient<IJurisRepository,
 JurisRepository>();

var app = bldr.Build();

Here you can see that you can use the Services object on
the application builder to add any services you need (in this
case, I’m adding an Entity Framework Core context object
and a repository that I’ll use to execute queries. To use
these services, you can simply add them to the lambda ex-
pression parameters to use them:

app.MapGet("/clients",
 async (IJurisRepository repo) => {
 return await repo.GetClientsAsync();
 });

By adding the required type, it will be injected into the lambda
expression when it executes. This is unlike Controller-based APIs
in that dependencies are usually defined at the class level. These
injected services don’t change how services are handled by the
service layer (i.e., Minimal APIs still create a scope for scoped
services). When you’re using URI parameters, you can just add
the services required to the other parameters. For example:

app.MapGet("/clients/{id:int}",
 async (int id, IJurisRepository repo) => {
 return await repo.GetClientAsync(id);
 });

This requires you think about the services you require for
each API call separately. But it also provides the flexibility
to use services at the API level.

Verbs
So far, all I’ve looked at are HTTP GET APIs. There are meth-
ods for the different types of verbs. These include:

•	 MapPost
•	 MapPut
•	 MapDelete

These methods work identically to the MapGet method. For
example, take this call to POST a new client:

app.MapPost("/clients",
 async (Client model,
 IJurisRepository repo) =>
 {
 // ...
 });

Notice that the model in this case doesn’t need to use at-
tributes to specify FromBody. It infers the type if the shape
matches the type requested. You can mix and match all of
what you might need (as seen in MapPut):

Minimal APIs in .NET 6

65codemag.com

 await repo.GetClientsAsync());
 }).AllowAnonymous();

In this way, you can mix and match authentication and au-
thorization as you like.

Using Minimal APIs without Top-Level Functions
This new change to .NET 6 can come to a shock to many
of you. You might not want to change your Program.cs to
use Top-Level Functions for all your projects, but can you
still use Minimal APIs without having to move to Top-Level
Functions. If you remember, earlier in the article I men-
tioned that most of the magic of Minimal APIs comes from
the IEndpointRouteBuilder interface. Not only does the
WebApplication class support it, but it’s also used in the
traditional Startup class you may already be using. When
you call UseEndpoints, the delegate you specify there pass-
es in an IEndpointRouteBuilder, which means you can just
call MapGet:

public void Configure(IApplicationBuilder app,
 IWebHostEnvironment env)
{
 if (env.IsDevelopment())
 {
 app.UseDeveloperExceptionPage();
 }

 app.UseRouting();

 app.UseAuthorization();

 app.UseEndpoints(endpoints =>
 {
 endpoints.MapGet("/clients",
 async (IJurisRepository repo) =>
 {
 return Results.Ok(
 await repo.GetClientsAsync());
 }).AllowAnonymous();
 });
}

Although I think that Minimal APIs are most useful for green-
field projects or prototyping projects, you can use them in
your existing projects (assuming you’ve upgraded to .NET 6).

Where Are We?
Hopefully, you’ve seen here that Minimal APIs are a new way
to build your APIs without much of the plumbing and cer-
emony that are involved with Controller-based APIs. At the
same time, I hope you’ve seen that as complexity increases,
Controller-based APIs have benefits as well. I see Minimal
APIs as a starting point for creating APIs and, as a project
matures, I might move to Controller-based APIs. Although
it’s very new, I think Minimal APIs are a great way of creat-
ing your APIs. The patterns and best practices about how
to use them will only get answered in time. I hope you can
contribute to that conversation!

If you’d like a copy of the code for this article, please visit:
https://github.com/shawnwildermuth/codemag-minimalapis.

If you’re going to pass in a delegate to the MapXXX classes, you
can simply have them return an IResult to require a status code:

app.MapGet("/clients/{id:int}", HandleGet);

async Task<IResult> HandleGet(int id,
 IJurisRepository repo)
{
 try
 {
 var client = await repo.GetClientAsync(id);
 if (client == null) return Results.NotFound();
 return Results.Ok(client);
 }
 catch (Exception)
 {
 return Results.BadRequest("Failed");
 }
}

Notice that because you’re async in this example, you need
to wrap the IResult with a Task object. The resulting re-
turn is an instance of IResult. Although Minimal APIs are
meant to be small and simple, you’ll quickly see that, prag-
matically, APIs are less about how they’re instantiated and
more about the logic inside of them. Both Minimal APIs and
Controller-based APIs work essentially the same way. The
plumbing is all that changes.

Securing Minimal APIs
Although Minimal APIs work with Authentication and Autho-
rization middleware, you may still need a way to specifying,
on an API-level, how security should work. If you’re coming
from Controller-based APIs, you might use the Authorize
attribute to specify how to secure your APIs, but without
controllers, you’re left to specify them at the API level. You
do this by calling methods on the generated API calls. For
example, to require authorization:

app.MapPost("/clients",
 async (ClientModel model,
 IJurisRepository repo) =>
 {
 // ...
 }).RequireAuthorization();

This call to RequireAuthorization is tantamount to using
the Authorize filter in Controllers (e.g., you can specify
which Authentication scheme or other properties you need).
Let’s say you’re going to require authentication for all calls:

bldr.Services.AddAuthorization(cfg => {
 cfg.FallbackPolicy =
 new AuthorizationPolicyBuilder()
 .RequireAuthenticatedUser()
 .Build();
});

You’d then not need to add RequireAuthentication on
every API, but you could override this default by allowing
anonymous for other calls:

app.MapGet("/clients",
 async (IJurisRepository repo) =>
 {
 return Results.Ok(

� Shawn Wildermuth
�

SPONSORED SIDEBAR:

Get .NET 6 Help for Free

How does a FREE hour-
long CODE Consulting
virtual meeting with our
expert consultants sound?
Yes, FREE. No strings. No
commitment. No credit
cards. Nothing to buy.
For more information,
visit www.codemag.com/
consulting or email us at
info@codemag.com.

Minimal APIs in .NET 6

66 codemag.com

ONLINE QUICK ID 2201091

Simplest Thing Possible: Tasks

Simplest Thing Possible: Tasks
Despite all of the time that Tasks and the Task Parallel Library have been in .NET, their capabilities are still underutilized. For the
record, Tasks were introduced in .NET 4, released in February 2010, nearly 12 years ago! That’s a few lifetimes in the I/T world. For
long-time CODE Magazine readers, you may recall my Simplest Thing Possible (STP) series that ran periodically from 2012 to 2016.

Past hits include three issues on Dynamic Lambdas, Prom-
ises in JavaScript, NuGet, and SignalR. I still get pinged on
the Dynamic Lambda work—an oldie, but a very much rel-
evant goodie!

I was a bit dumbfounded to realize that I never did an STP
on Tasks! Better late than never! The STP series had and has
one goal: to get you up and running on a .NET feature as
quickly as possible so you can take it to the next level for
your context and use-cases. As .NET evolves and its history
grows, as well as the numerous blog posts with opinions—
some good, some not, some dogmatic, some neutral—more
than ever, it has become important to cut through the
noise. In most cases, the official Microsoft Documentation
is the best source of raw, unopinionated information.

Let’s get to it!

What Is a Task?
Think of a Task as a unit of work that is to be executed
sometime in the future. I’ve added the emphasis on future
because that’s what a Task is: a future. An oft-asked ques-
tion in the various online forums (Stack Overflow, etc.) is
whether a Task is a promise in the same way promises are
implemented in JavaScript. Promises are supported in .NET
through the TaskCompletionSource Class, which is beyond
the scope of this article.

In the meantime, consider a Task as a future unit of work
that may exist on its own or in the context of TaskComple-
tionSource. When in the context of TaskCompletionSource,
a Task participates in fulfilling a promise. A promise doesn’t
guarantee that the operation is successful. What’s guaran-
teed is that a result of some kind will be returned. In most
cases, it’s sufficient to implement tasks as independent en-
tities, apart from TaskCompletionSource. A good use case
for TaskCompletionSource is in the API context where some
kind of result, even if it’s an error, must be returned before
yielding control back to the caller. In that regard, TaskCom-
pletionSource is a promise in the same way promises are
implemented in JavaScript.

Tasks have been a .NET feature since version 4.0, which was
released in 2010. Despite being an available feature for over
a decade, it remains a somewhat under-utilized feature, giv-
ing credence to the notion that sometimes, what’s old is
new! The same is true with the async/await language fea-
ture introduced in C# 5 in 2012.

A Related Concept: Async/Await
Tasks are asynchronous (async). It’s impossible to discuss
Tasks without discussing the async/await language feature.
Implemented in both C# 5 and VB.NET 11 in 2012, async and
await have been around for a long time! If you’re going to
implement tasks, you must necessarily confront asynchro-
nous programming, which is a very different concept than

the synchronous programming of the past. Microsoft made
this task much easier when it introduced some “syntactic
sugar” to make things easier. In other words, the .NET com-
piler undertakes the heavy lifting to transform your C# or
VB.NET into the necessary IL (Intermediate Language) code
to support async calls.

Sometimes, what’s old is new!

An async call, as the name implies, means that the code
making the call does not wait for the result. And yet, the
associated keyword to async is await, which can be con-
fusing because it implies that await means that the code
waits, which contradicts async programming! Instead, what
it means is that the calling code continues its work while it
waits for (or awaits) the async code to complete.

Before async/await, you needed to implement callbacks,
which meant that you had to pass a reference of the func-
tion that was to receive the async function’s result. Async
calls often took a bit to understand if the only world you
were familiar with was synchronous calls where the code
would wait, and wait, and continue to wait until either the
call completed or timed-out. This often made for a very un-
pleasant user experience because the client, typically a user
interface, wouldn’t update. The UI and the whole app ap-
peared to be frozen, and then after some time, everything
magically came back to life!

Async/await allows for calls to be non-blocking, meaning
that the current thread isn’t blocked while the task is run-
ning in another thread. Hence, as stated previously, the
current thread continues its work while it waits. The async/
await syntax alleviates you of the direct burden of estab-
lishing callbacks. Async programming presents you with an
opportunity for better performing applications because it
results in more efficient use of resources. Underneath the
covers, .NET manages the spawning of a new thread in which
to carry out the task, making sure that result gets back to
your calling code.

The following document list contains resources that you’ll
want to review. (Note: Be sure to view the docs relevant
to the .NET Framework version that you and your team are
using!)

•	 Task Class: https://docs.microsoft.com/en-us/dot-
net/api/system.threading.tasks.task-1?view=net-5.0

•	 TaskCompletionSource Class: https://docs.microsoft.
com/en-us/dotnet/api/system.threading.tasks.task-
completionsource-1?view=net-5.0

•	 Async keyword (C#): https://docs.microsoft.com/en-
us/dotnet/csharp/language-reference/keywords/async

John V. Petersen
johnvpetersen@gmail.com
linkedin.com/in/johnvpetersen

Based near Philadelphia,
Pennsylvania, John is an
attorney, information
technology developer,
consultant, and author.

www.linkedin.com/in/johnvpetersen
https://docs.microsoft.com/en-us/dotnet/api/system.threading.tasks.task-1?view=net-5.0
https://docs.microsoft.com/en-us/dotnet/api/system.threading.tasks.taskcompletionsource-1?view=net-5.0
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/async

67codemag.com Simplest Thing Possible: Tasks

of async programming to get up and running for most
use cases.

The following is a simple XUnit test that calls the WebCall
Method:

 [Fact]
 public async void WebCallASyncTest()
 {
 var result = await WebCall();
 var content =
 await result.Content
 .ReadAsStringAsync();
 Assert.True(!string
 .IsNullOrEmpty(content));
 }

Because the WebCall method is marked as async, it is await-
able. If you wish to test the async operation, the unit test
itself must be async because of the requirement to use the
await operator. Note that the void keyword instead of Task is
used. The Task class comes in two flavors: generic and non-
generic. For clarity purposes, if you wanted to replace the
void keyword with Task, you can do that. Either way, the unit
test executes the code under test asynchronously.

What if you wanted to run an awaitable method in such way
that it blocked the current thread? In other words, can you
run an async method synchronously? You can do it by di-
rectly accessing the task’s result property, which itself is
an anti-pattern! That is not to suggest that employing an
anti-pattern is the incorrect thing to do. Employing anti-
patterns is often necessary based on context.

The following code is the previous test reworked to run
async code synchronously:

 [Fact]
 public void WebCallSyncTestResult()
 {
 var result = WebCall().Result;
 var content =
 result.Content
 .ReadAsStringAsync().Result;
 Assert.True(!string
 .IsNullOrEmpty(content));
 }

Wrapping Existing Non-Async Code
in a Task
Tasks can be very useful in offloading existing workloads to
another thread. Perhaps you have an application that re-
quires a call to a process and you’d like the user to still be
able to interact with the UI while it runs. If that code runs
synchronously, the UI thread will be blocked until it gets a
response back from this long running process. The following
example employs the static Task.Run method to wrap a call
to a legacy method:

[Fact]
public async void TestLegacyCallWithTask() {
var result =
 await Task.Run(
 () => LegacyProcess(
 new string[1] {"1234"})

•	 Await operator (C#): https://docs.microsoft.com/
en-us/dotnet/csharp/language-reference/operators/
await

•	 Async keyword (VB.NET): https://docs.microsoft.com/
en-us/dotnet/visual-basic/language-reference/modi-
fiers/async

•	 Await operator (VB.NET): https://docs.microsoft.
com/en-us/dotnet/visual-basic/language-reference/
operators/await-operator

•	 The async programming model: https://docs.micro-
soft.com/en-us/dotnet/csharp/async

•	 Task-based async programming model: https://docs.
microsoft.com/en-us/dotnet/standard/parallel-pro-
gramming/task-based-asynchronous-programming

A Simple Async Task and
Test Example
The following is a very simple example of implementing a
Task in a custom method:

 public async Task<HttpResponseMessage>
 WebCall(string url =
 "https://www.google.com") {
 using var client = new HttpClient();
 var result = await client.GetAsync(url);
 return result;
 }

The WebCall method is a very simple wrapper around the
HttpClient class, which contains async methods to perform
delete, get, patch, post, and put operations. HttpClient is
the preferred class to interact with APIs. If you aren’t fa-
miliar with the HttpClient class, the reference documents
are a good source of information and can be found here:
https://docs.microsoft.com/en-us/dotnet/api/system.net.
http.httpclient?view=net-5.0.

Whenever a method body contains an await statement, the
method signature must be marked as async. The other ele-
ment to note is the return type specified in the signature:
Task<HttpResponseMessage>. The return statement itself is
of type HttpResponseMessage. Ultimately, the HttpRespon-
seMessage will be returned in the future via a Task. There
are four simple elements to implement async programming
in this first example:

•	 Specify in the method signature that the return type is
wrapped in a task: Task<HttpResponseMessage>.

•	 Mark the method signature as async.
•	 Have at least one awaitable method call in the meth-

od body.
•	 Return the type specified in the task generic declara-

tion: HttpResponseMessage.

That’s all there is to it. Until use cases become more com-
plex, you don’t need to be an expert in all the details

The method signature must be
marked as async when the method
body contains an await statement.

https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/operators/await
https://docs.microsoft.com/en-us/dotnet/visual-basic/language-reference/modifiers/async
https://docs.microsoft.com/en-us/dotnet/visual-basic/language-reference/operators/await-operator
https://docs.microsoft.com/en-us/dotnet/csharp/async
https://docs.microsoft.com/en-us/dotnet/standard/parallel-programming/task-based-asynchronous-programming
https://docs.microsoft.com/en-us/dotnet/api/system.net.http.httpclient?view=net-5.0

68 codemag.com

microsoft.com/en-us/dotnet/api/system.threading.tasks.
taskcreationoptions?view=net-5.0.

Cancellation Tokens
In the previous example, take note of the cancellation token
passed as a parameter. This is one of async programming’s
major benefits, to cancel a long running Task. If the user
elects to cancel the task while it’s running, that can be
accomplished because the current thread is not blocked,
allowing user interaction. A great tutorial on cancelling
long-running tasks may be found in Brian Languas’s You-
Tube Video: https://youtu.be/TKc5A3exKBQ.

Conclusion
Tasks and async programming are powerful tools to add to
your development toolbox and this article has only scratched
the surface. More complex use cases include wrapping mul-
tiple tasks together and waiting for all to complete (each
running in their own thread .NET’s Task and async capabili-
ties are a rich and interesting environment! If you want to
see more of this type of content, drop a line to me at CODE
Magazine and I’ll keep pumping them out. With .NET 5 and
VS Code, there’s much to distill and demystify.

);
 Assert.True(result >= 1);
}

The previous example assumes a short running, non-CPU-
intensive process. The Run method is a short-hand method
for defining and launching a Task in one operation. The Run
method causes the task to run on a thread allocated from
the default thread pool.

What if it’s a long running process? In that case, you’d
want to use Task.Factory.StartNew(), which provides more
granular control over how the Task gets created by provid-
ing access to more parameters. Figure 1 illustrates the third
StartNew method signature with the additional parameters
controlling how the Task is created.

Task.Run is a simpler,
shorthand way to create and
start a task in one operation.

Task.Run on the other hand, is a simpler, shorthand way to
create and start a task in one operation.

If your legacy process is long-running or CPU-intensive,
you’ll want to use the approach illustrated in the following
example:

var source = new CancellationTokenSource();
var result =
 await Task.Factory.StartNew<int>(
 () => LegacyProcess(
 new string[1] {"1234"}),source.Token);

Current docs on the Run and StartNew methods may be
found here:

•	 Run(): https://docs.microsoft.com/en-us/dotnet/api/
system.threading.tasks.task.run?view=net-5.0

•	 StartNew(): https://docs.microsoft.com/en-us/dotnet/api/
system.threading.tasks.taskfactory.startnew?view=net-5.0

For more information on Task creation options, and there
are many, that guidance may be found here: https://docs.

Figure 1: The StartNew()
method accepts additional
parameters to control how
the task is created.

� John V. Petersen
�

Simplest Thing Possible: Tasks

https://docs.microsoft.com/en-us/dotnet/api/
https://docs.microsoft.com/en-us/dotnet/api/system.threading.tasks.taskfactory.startnew?view=net-5.0
https://docs.microsoft.com/en-us/dotnet/api/system.threading.tasks.taskcreationoptions?view=net-5.0

69codemag.com

ONLINE QUICK ID 2201101

Running Serverless Functions on Kubernetes

Running Serverless Functions
on Kubernetes
Serverless functions are modular pieces of code that respond to a variety of events. It’s a cost-efficient way to implement
microservices. Developers benefit from this paradigm by focusing on code and shipping a set of functions that are triggered
in response to certain events. No server management is required and you can benefit from automated scaling, elastic load

balancing, and the “pay-as-you-go” computing model. Ku-
bernetes, on the other hand, provides a set of primitives to
run resilient distributed applications using modern contain-
er technology. It takes care of autoscaling and automatic
failover for your application and it provides deployment
patterns and APIs that allow you to automate resource man-
agement and provision new workloads. Using Kubernetes
requires some infrastructure management overhead and it
may seem like a conflict putting serverless and Kubernetes
in the same box.

Hear me out. I come at this with a different perspective that
may not be evident at the moment.

You could be in a situation where you’re only allowed to
run applications within a private data center, or you may be
using Kubernetes but you’d like to harness the benefits of
serverless. There are different open-source platforms, such
as Knative and OpenFaaS, that use Kubernetes to abstract
the infrastructure from the developer, allowing you to de-
ploy and manage your applications using serverless archi-
tecture and patterns.

This article will show you how to run serverless functions
using Knative and Kubernetes.

Introduction to Knative
Knative is a set of Kubernetes components that provides server-
less capabilities. It provides an event-driven platform that can
be used to deploy and run applications and services that can
auto-scale based on demand, with out-of-the-box support for
monitoring, automatic renewal of TLS certificates, and more.

Knative is used by a lot of companies. In fact, it powers
the Google Cloud Run platform, IBM Cloud Code Engine, and
Scaleway serverless functions.

The basic deployment unit for Knative is a container that
can receive incoming traffic. You give it a container image
to run and Knative handles every other component needed
to run and scale the application. The deployment and man-
agement of the containerized app is handled by one of the
core components of Knative, called Knative Serving. Knative
Serving is the component in Knative that manages the de-
ployment and rollout of stateless services, plus its network-
ing and autoscaling requirements.

The other core component of Knative is called Knative Event-
ing. This component provides an abstract way to consume
Cloud Events from internal and external sources without
writing extra code for different event sources. This article
focuses on Knative Serving, but you’ll learn about how to

use and configure Knative Eventing for different use-cases
in a future article.

Development Set Up
In order to install Knative and deploy your application,
you’ll need a Kubernetes cluster and the following tools
installed:

•	 Docker
•	 kubectl, the Kubernetes command-line tool
•	 kn CLI, the CLI for managing Knative application and

configuration

Installing Docker
To install Docker, go to the URL https://docs.docker.com/
get-docker and download the appropriate binary for your OS.

Installing kubectl
The Kubernetes command-line tool kubectl allows you to run
commands against Kubernetes clusters. Docker Desktop in-
stalls kubectl for you, so if you followed the previous section
on installing Docker Desktop, you should already have kubectl
installed and you can skip this step. If you don’t have kubectl
installed, follow the instructions below to install it.

If you’re on Linux or macOS, you can install kubectl using
Homebrew by running the command brew install kubectl.
Ensure that the version you installed is up to date by run-
ning the command kubectl version --client.

If you’re on Windows, run the command curl -LO https://
dl.k8s.io/release/v1.21.0/bin/windows/amd64/kubectl.
exe to install kubectl, and then add the binary to your PATH.
Ensure that the version you installed is up to date by running
the command kubectl version --client. You should have ver-
sion 1.20.x or v1.21.x because in a future section, you’re go-
ing to create a server cluster with Kubernetes version 1.21.x.

Installing kn CLI
kn CLI provides a quick and easy interface for creating Kna-
tive resources, such as services and event sources, without
the need to create or modify YAML files directly. kn also sim-
plifies completion of otherwise complex procedures, such as
autoscaling and traffic splitting.

To install kn on macOS or Linux, run the command brew
install kn.

To install kn on Windows, download and install a stable bi-
nary from https://mirror.openshift.com/pub/openshift-v4/
clients/serverless/latest. Afterward, add the binary to the
system PATH.

Peter Mbanugo
p.mbanugo@yahoo.com
www.pmbanugo.me
twitter.com/p_mbanugo

Peter Mbanugo is a writer
and software developer who
codes in JavaScript and C#.
He is the author of “How
to build a serverless app
platform on Kubernetes”.
He has experience working
on the Microsoft stack of
technologies and also build-
ing full-stack applications in
JavaScript. He’s a co-chair
on NodeJS Nigeria, a Twilio
Champion, and a contributor
to the Knative open-source
project.

He’s the maker of Hamoni
Sync, a real-time state
synchronization as a service
platform. He works with
foobar GmbH as a Senior
Software Consultant.

When he isn’t coding, he
enjoys writing the technical
articles that you can find on
his website or other publica-
tions, such as on Pluralsight
and Telerik.

https://twitter.com/p_mbanugo
https://mirror.openshift.com/pub/openshift-v4/clients/serverless/latest
https://docs.docker.com/get-docker

70 codemag.comRunning Serverless Functions on Kubernetes

ates the images required to run the Kubernetes server as
containers.

The status of Kubernetes shows in the Docker menu and the
context points to docker-desktop, as shown in Figure 2.

Create a Cluster with kind
You can also create a cluster using kind, a tool for running
local Kubernetes clusters using Docker container nodes. If
you have kind installed, you can run the following command
to create your kind cluster and set the kubectl context.

curl –sL \
https://raw.githubusercontent.com/csantanapr\
/knative-kind/master/01-kind.sh | sh

Create a Cluster with DigitalOcean Kubernetes Service
You can also use a managed Kubernetes service like Digi-
talOcean Kubernetes Service. In order to use DigitalOcean
Kubernetes Service (http://digitalocean.com/products/ku-
bernetes/), you need a DigitalOcean account. If you don’t
have an account, you can create one using my referral link
-https://m.do.co/c/257c8259d8ef, which gives you $100
credit to try out different things on DigitalOcean.

You’ll create a cluster using doctl, the official command-
line interface for the DigitalOcean API. After you’ve created
a DigitalOcean account, follow the instructions on docs.
digitalocean.com/reference/doctl/how-to/ to install and
configure doctl.

After you’ve installed and configured doctl, open your com-
mand line application and run the command below in order
to create your cluster on DigitalOcean.

doctl kubernetes cluster \
create serverless-function \
--region fra1 --size s-2vcpu-4gb \
--count 1

Wait for a few minutes for your cluster to be ready. When it’s
done, you should have a single-node cluster with the name
serverless-function, in Frankfurt. The size of the node is a
computer with two vCPUs, and 4GB RAM. Also, the command
you just executed sets the current kubectl context to that of
the new cluster.

You can modify the values passed to the doctl kubernetes
cluster create command. The --region flag indicates the
cluster region. Run the command doctl kubernetes options
regions to see possible values that can be used. The computer
size to use when creating nodes is specified using the --size
flag. Run the command doctl kubernetes options sizes for a
list of possible values. The --count flag specifies the number
of nodes to create. For prototyping purposes, you created a
single-node cluster with two vCPUs and 4GB RAM.

Check that you can connect to your cluster by using kubectl
to see the nodes. Run the command kubectl get nodes. You
should see one node in the list, and the STATUS should be
READY, as shown in Figure 3.

Install Knative Serving
Knative Serving manages service deployments, revisions,
networking, and scaling. The Knative Serving component

Creating a Kubernetes Cluster
You need a Kubernetes cluster to run Knative. You can use a
local cluster using Docker Desktop or kind.

Create a Cluster with Docker Desktop
Docker Desktop includes a stand-alone Kubernetes server
and client. This is a single-node cluster that runs within a
Docker container on your local system and should be used
only for local testing.

To enable Kubernetes support and install a standalone in-
stance of Kubernetes running as a Docker container, go to
Preferences > Kubernetes and then click Enable Kuber-
netes.

Click Apply & Restart to save the settings and then click
Install to confirm, as shown in Figure 1. This instanti-

Figure 1: Enable Kubernetes on Docker Desktop

Figure 2: kube context

,http://digitalocean.com/products/kubernetes/
docs.digitalocean.com/reference/doctl/how-to/

71codemag.com Running Serverless Functions on Kubernetes

 --patch \
'{"data":{"ingress.class":\
"kourier.ingress.networking.knative.dev"}}'

5.	 Verify that Knative is Installed properly. All pods
should be in Running state and the kourier-ingress
service configured, as shown in Figure 4.

~ kubectl get pods -n knative-serving
~ kubectl get pods -n kourier-system
~ kubectl get svc -n kourier-system

6.	 Configure DNS for Knative Serving. You’ll use a wild-
card DNS service for this exercise. Knative provides a
Kubernetes Job called default-domain that will only
work if the cluster’s LoadBalancer Service exposes an
IPv4 address or hostname. Run the command below to
configure Knative Serving to use sslip.io as the default
DNS suffix.

~ kubectl apply -f \
https://github.com/knative/serving/releases/\
download/v$KNATIVE_VERSION/\
serving-default-domain.yaml

If you want to use your own domain, you’ll need to configure
your DNS provider. See https://knative.dev/docs/admin/in-
stall/serving/install-serving-with-yaml/#configure-dns for
instructions on how to do that.

Serverless Functions on Kubernetes
func is an extension of the kn CLI, that enables the devel-
opment and deployment of platform-agnostic functions as
a Knative service on Kubernetes. It comprises of function
templates and runtimes and uses Cloud Native Buildpacks to
build and publish OCI images of the functions.

To use the CLI, install it using Homebrew by running the
command brew tap knative-sandbox/kn-plugins && brew
install func. If you don’t use Homebrew, you can download
a pre-built binary from https://github.com/knative-sand-
box/kn-plugin-func/releases/tag/v0.18.0, then unzip and
add the binary to your PATH.

Functions can be written in Go, Java, JavaScript, Python,
and Rust. You’re going to create and deploy a serverless
function written in JavaScript.

Create a Function Project
To create a new JavaScript function, open your command-
line application and run the command kn func create
sample-func --runtime node. A new directory named
sample-func will be created and a Node.js function project
will be initialized. Other runtimes available are: Go, Python,
Quarkus, Rust, Spring Boot, and TypeScript.

The func.yaml file contains configuration information for
the function. It’s used when building and deploying the

exposes your service via an HTTP URL and has safe defaults
for its configurations.

For kind users, follow the instructions below to install Kna-
tive Serving.

1.	 Run the command curl -sL https://raw.githubusercon-
tent.com/csantanapr/knative-kind/master/02-serv-
ing.sh | sh to install Knative Serving.

2.	 When that’s done, run the command curl -sL https://
raw.githubusercontent.com/csantanapr/knative-kind/
master/02-kourier.sh | sh to install and configure Kourier.

For Docker Desktop users, run the command curl -sL https://
raw.githubusercontent.com/csantanapr/knative-docker-
desktop/main/demo.sh | sh.

Follow the instructions below to install Knative in your Digi-
talOcean cluster. The same instructions will also work if you
use Amazon EKS or Azure Kubernetes Service.

1.	 Run the following command to specify the version of
Knative to install.

export KNATIVE_VERSION="0.26.0"

2.	 Run the following commands to install Knative Serving
in namespace knative-serving.

~ kubectl apply –f \
https://github.com/knative/serving/releases/\
download/v$KNATIVE_VERSION/serving-crds.yaml

~ kubectl wait --for=condition=Established \
--all crd

~ kubectl apply -f \
https://github.com/knative/serving/releases/\
download/v$KNATIVE_VERSION/serving-core.yaml

~ kubectl wait pod --timeout=-1s \
--for=condition=Ready -l '!job-name' \
-n knative-serving > /dev/null

3.	 Install Kourier in namespace kourier-system.

~ kubectl apply -f \
https://github.com/knative/net-kourier/\
releases/download/v0.24.0/kourier.yaml

~ kubectl wait pod \
--timeout=-1s \
--for=condition=Ready \
-l '!job-name' -n kourier-system

~ kubectl wait pod \
--timeout=-1s \
--for=condition=Ready \
-l '!job-name' -n knative-serving

4.	 Run the following command to configure Knative to use
Kourier.

~ kubectl patch configmap/config-network \
 --namespace knative-serving \
 --type merge \ Figure 3: kubectl get nodes

A Good Book to Read

If you’re interested in
serverless, Kubernetes, and
Knative, you should check
out my book “How to build
a serverless application
platform on Kubernetes.
You’ll learn how to build
a serverless platform that
runs on Kubernetes using
GitHub, Tekton, Knative, Cloud
Native Buildpacks, and other
interesting technologies.
You can find it on https://
books.pmbanugo.me/
serverless-app-platform.

https://raw.githubusercontent.com/csantanapr/knative-kind/master/02-serving.sh
https://raw.githubusercontent.com/csantanapr/knative-kind/master/02-kourier.sh
https://raw.githubusercontent.com/csantanapr/knative-docker-desktop/main/demo.sh
https://knative.dev/docs/admin/install/serving/install-serving-with-yaml/#configure-dns
https://github.com/knative-sandbox/kn-plugin-func/releases/tag/v0.18.0
https://books.pmbanugo.me/serverless-app-platform

72 codemag.comRunning Serverless Functions on Kubernetes

 };
}

Deploy the Function
To deploy your function to your Kubernetes cluster, use the
deploy command. Open the terminal and navigate to the
function’s directory. Run the command kn func deploy to
deploy the function. Because this is the first time you’re
deploying the function, you’ll be asked for the container
registry info for where to publish the image. Enter your reg-
istry’s information (e.g., docker.io/<username>) and press
ENTER to continue.

The function will be built and pushed to the registry. After
that, it’ll deploy the image to Knative and you’ll get a URL
for the deployed function. Open the URL in a browser to see
the returned object. The response you get should be similar
to what you see in Figure 5.

You can also run the function locally using the command
kn func run.

Other Useful Commands
You’re now familiar with creating and deploying functions
to Knative using the build and deploy commands. There are
other useful commands that can come in handy when work-
ing with functions. You can see the list of commands avail-
able using the command kn func --help.

The deploy command builds and deploys the application. If
you want to build an image without deploying it, you can
use the build command (i.e., kn func build). You can pass
it the flag -i <image> to specify the image, or -r <registry>
to specify the registry information.

The kn func info command can be used to get information
about a function (e.g., the URL). The command kn func list
on the other hand, lists the details of all the functions you
have deployed.

To remove a function, you use the kn func delete <name>
command, replacing <name> with the name of the function
to delete.

You can see the configured environment variables using the
command kn func config envs. If you want to add an environ-
ment variable, you can use the kn func config envs add com-
mand. It brings up an interactive prompt to add environment
variables to the function configuration. You can remove envi-
ronment variables as well using kn func config envs remove.

What’s Next?
Serverless functions are pieces of code that take an HTTP
request object and provide a response. With serverless func-
tions, your application is composed of modular functions
that respond to events and can be scaled independently.
In this article, you learned about Knative and how to run
serverless functions on Kubernetes using Knative and the
func CLI. You can learn more about Knative on knative.dev,
and a cheat sheet for the kn CLI is available on cheatsheet.
pmbanugo.me/knative-serving.

function. You can specify the buildpack to use, environment
variables, and options to tweak the autoscaling options for
the Knative Service. Open the file and update the envs field
with the value below:

- name: TARGET
 value: Web

The index.js file contains the logic for the function. You can
add more files to the project, or install additional depen-
dencies, but your project must include an index.js file that
exports a single default function. Let’s explore the content
of this file.

The index.js file exports the invoke(context) function that
takes in a single parameter named context. The context
object is an HTTP object containing the HTTP request data
such as:

•	 httpVersion: The HTTP version
•	 method: The HTTP request method (only GET or POST

supported)
•	 query: The query parameters
•	 body: Contains the request body for a POST request
•	 headers: The HTTP headers sent with the request

The invoke function calls the handlePost function if it’s a
POST request, or the handleGet function when it’s a GET re-
quest. The function can return void or any JavaScript type.
When a function returns void, and no error is thrown, the call-
er will receive a 204 No Content response. If you return some
value, the value gets serialized and returned to the caller.

Modify the handleGet function to return the value from the
TARGET environment variable, the query paramteter, and
date. Open index.js and update the handleGet function
with the function definition below:

function handleGet(context) {
 return {
 target: process.env.TARGET,
 query: context.query,
 time: new Date().toJSON(),

Figure 5: Function invocation response

Figure 4: Verify installation

� Peter Mbanugo
�

cheatsheet.pmbanugo.me/knative-serving

73codemag.com

 v

Jan/Feb 2022
Volume 23 Issue 1

Group Publisher
Markus Egger

Associate Publisher
Rick Strahl

Editor-in-Chief
Rod Paddock

Managing Editor
Ellen Whitney

Contributing Editor
John V. Petersen

Content Editor
Melanie Spiller

Editorial Contributors
Otto Dobretsberger
Jim Duffy
Jeff Etter
Mike Yeager

Writers In This Issue
Bilal Haidar	 Joydip Kanjilal
Sahil Malik	 Peter Mbanugo
Rod Paddock	 John V. Petersen
Paul D. Sheriff	 Shawn Wildermuth
Mike Yeager

Technical Reviewers
Markus Egger
Rod Paddock

Production
Friedl Raffeiner Grafik Studio
www.frigraf.it

Graphic Layout
Friedl Raffeiner Grafik Studio in collaboration
with onsight (www.onsightdesign.info)

Printing
Fry Communications, Inc.
800 West Church Rd.
Mechanicsburg, PA 17055

Advertising Sales
Tammy Ferguson
832-717-4445 ext 26
tammy@codemag.com

Circulation & Distribution
General Circulation: EPS Software Corp.
Newsstand:	American News Company (ANC)
	 Media Solutions

Subscriptions
Subscription Manager
Colleen Cade
ccade@codemag.com

US subscriptions are US $29.99 for one year. Subscriptions
outside the US are US $50.99. Payments should be made
in US dollars drawn on a US bank. American Express,
MasterCard, Visa, and Discover credit cards accepted.
Bill me option is available only for US subscriptions.
Back issues are available. For subscription information,
e-mail subscriptions@codemag.com.

Subscribe online at
www.codemag.com

CODE Developer Magazine
6605 Cypresswood Drive, Ste 425, Spring, Texas 77379
Phone:	 832-717-4445

CODE COMPILERS

CODA: On Rules and Procedures

(Continued from 74)

a time, it stated that scrum was simple to under-
stand but difficult to master. I believed that when
it was written, and I still believe that today, be-
cause it’s true. The problem with the Scrum Guide
is that it no longer states that simple, plain truth.

In the 2020 version, that statement was reduced
to “scrum is simple.” The 2020 guide also states
that Scrum is “purposely incomplete.” When the
revision history between 2017 and 2020 is re-
viewed (http://www.scrumguides.org/revisions.
html), you can note that, among other things,
scrum has become less prescriptive.

Scrum is simple to understand
but difficult to master.

There’s also the change in wording from self-
managing to self-organizing. Is that a distinc-
tion without a difference? Is that plain, simple
language that leads to better understanding? No.
That’s a subjective call. It’s one that each team
and organization must answer for itself.

This is also not a rant against scrum, whether
it’s the scrum.org camp or the scrumalliance.org
camp. Although there are two different organi-
zations, and they both point to the same Scrum
Guide (www.scrumguides.org) and the Agile Man-
ifesto (www.agilemanifesto.org). How each camp
describes scrum isn’t always consistent. Heck,
I’ve been practicing Agile principles in one form
or another for over 20 years and I’m confused.
It’s for that reason that I’ve decided to use the
Agile Manifesto as my sole basis to define Agile,
which bears repeating in its entirety here:

We are uncovering better ways of developing
software by doing it and helping others do it.
Through this work, we have come to value:

•	 Individuals and interactions over processes
and tools

•	 Working software over comprehensive doc-
umentation

•	 Customer collaboration over contract nego-
tiation

•	 Responding to change over following a plan

That is, while there is value in the items on the
right (processes and tools), we value the items
on the left (individuals and interactions) more.

The Agile Manifesto nailed it as far as A): plain, sim-
ple language, and B): what could be built from it.

Is Agile alone enough to build software? Of
course not. Agile doesn’t exist in a vacuum. Soft-
ware development doesn’t exist in a vacuum ei-
ther. Business doesn’t exist in a vacuum. If an

� John V. Petersen
�

organization is to adopt Agile, software devel-
opment and the business must converge so that
they can work consistently toward the same goals
and objectives.

What is your software supposed to do? What is
it not supposed to do? There are two essential
elements, two sides of the software development
coin: A): IT, and B): the business. Between the
two, there’s a chasm that must be spanned. The
notion of a Ubiquitous Language, a term coined
in the software development context in 2002, was
on the right track but missed the mark through
all its mechanics and ceremony. And it should be
noted that IT serves the business, period.

All software has business requirements. Such re-
quirements are going to be articulated in busi-
ness terms by the business, as they should be,
because it’s the business that owns the software
and will be the arbiter of whether the software
works and consequently, whether it delivers
value. It’s incumbent on software developers to
be the Rosetta Stone to make the translation. We
must become experts enough in the business to
do that. The business isn’t going to be experts in
software development.

In my experience, open, honest, and transparent
communications is a great place to start. At the
beginning of every project, people want the same
thing. Agile may or may not be better than Water-
fall in a given context; it all depends on your or-
ganization. After all, context is a necessary factor
in assessing whether language is plain and simple.
We must always consider who the audience is. It’s
an obvious point perhaps, but it’s one worth re-
peating. Employing plain, simple language where
individuals and interactions work and collaborate
to build, modify, and deliver working software that
yields value is, in my opinion, a more straightfor-
ward way of articulating the Agile Manifesto’s true
meaning and intent. As for the Agile Principles,
that’s up to you and your organization. There is, or
at least there should be, a shared goal of getting
things accomplished. Only you and your team can
assess what those goals and objectives should be.
Principles, absent context and what they are sup-
posed to mean, despite what appears to be plain,
simple language, are useless.

Every successful project has one thing in common:
good people that had a shared goal. Yes, mistakes
along the way are made. We never get it right the
first or second time in most cases. For us techies,
let’s avoid tech talk. And if the business is lack-
ing clarity on something, ask for more clarity. If
something isn’t feasible, explain why not in plain,
simple language that conveys the right concerns
that the business can act upon. If we don’t do
that, then how will we understand each other?
And if we can’t do that, how will we ever build
and deliver working software that delivers value?

http://www.scrumguides.org/revisions.html

codemag.com

Does this mean that developers aren’t or can’t be
business people? Are these mutually exclusive?
What does it mean to “work together?” What
about understanding each other?

How about Principle Three: Deliver working soft-
ware frequently, from a couple of weeks to a cou-
ple of months, with a preference for the shorter
timescale.

A couple of weeks vs. a couple of months? The
term “couple” is more idiomatic English than a
precise ordinal measure. Is it two weeks?

The principles declare a preference for “the short-
er timescale.” Scrum, an agile-based framework,
arguably conflicts, or, at the very least, makes
ambiguous, whether Principle Three is a bona-fide
agile requirement because at the conclusion of
each sprint, the aim is to deliver “potentially re-
leasable software.” If you don’t release software,
it isn’t delivered. And if it isn’t delivered, it isn’t
delivering any value. Just ask any businessper-
son who’s funding the project with a budget and
business objectives! The conflict here is that on
one hand, scrum is based on Agile Principles. On
the other hand, arguably, scrum, via the Scrum
Guide (http://www.scrumguides.org) appears
to throw this Agile principle out the window! In
other words, as plain and simple as the language
appears, when the one thing (the collection of
principles) conflicts with the other thing (the
manifesto) it’s based upon, is the language really
plain and simple? To the contrary, the language
is ambiguous and becomes less and less useful.
In such a case, the gulf between the theory and
its practical usefulness increases. Theory, without
any sort of practical application in the business
context, is useless. In my opinion, Agile has drift-
ed away from its roots in the manifesto, in part
because of a lack of the plain, simple language
that leads to better understanding.

I’ve always adhered to one basic principle: When
in doubt, go back to basics. This isn’t a rant
against Agile. But of late, there has been some
revolt against Agile and its progeny—scrum, in
particular—citing that Agile just doesn’t work.
The Scrum Guide, where scrum is codified, has
been “tinkered” with over the years. Once upon

lifting was completed as to any theory, the key to
advancement was in a collective understanding
of what something generally is and its associated
benefits. Not everyone was equally an expert in
Quantum Theory. And there was only one Niels
Bohr. Although he could have a conversation
with others in his field on an equal footing, oth-
ers needed to have some basic understanding
of what these complex and abstract ideas could
practically accomplish. Institutions and govern-
ments funded research, but sanction and funding
were ultimately implemented by people; people
who weren’t on the same intellectual plane as
Niels Bohr.

Simple does not mean dumbed-down. Simple
means not complex. We can understand, in gen-
eral terms, how a clock, a car, or a computer works
without knowing how to build those things. Think
of an elevator pitch and what’s required for it to
work. If an elevator ride lasts no more than 15
seconds, in that time, to get to the next step, the
idea or concept must be expressed in language
that anybody can understand. Understanding
does not require expertise. If getting to the next
step required equal footing on the same exper-
tise, nothing would ever be accomplished. We’re
just trying to get to the next step, not solve every
problem immediately.

What, then, qualifies as “plain, simple lan-
guage?” That very much depends on your point
of view and how that point of view meshes with
other points of view. Those points of view must
be reconciled for it to seem simple to all parties.

A specific area in software development where a
common language between developers and users
is in Domain Driven Design (DDD), an approach
developed by Eric Evans. In that work, he coined
the term Ubiquitous Language. Evans stated:

DDD is a very good book for outlining what the
two sides of the software development coin, de-
velopers and users, should do. If it were only
that easy, to just speak the same language, to
use common terms that reference the same com-
monly accepted thing. Bounded contexts and
well-defined domain models sound good. Those
things, which are DDD elements, are themselves
the end-result of some other process. It begs the

question of how we, the two sides, build “qual-
ity” software.

Quality can be a bit of a subjective, loaded term.
In this context, is the software easy to under-
stand? Does it work according to customer’s ex-
pectations? That’s a practical, not a theoretical
concern. If the software doesn’t work, all the
theory in the world won’t matter. The art of soft-
ware development, as I see it, is the proper mix
of theory and pragmatism. There’s a lot of good
theory in the DDD book and other resources, with
some of it being useful in a pragmatic sense. It’s
always important to remember that the value of
theory is a function of its application in the real
world.

One possible answer to address how to employ
plain, simple language is the Agile Manifesto and
its 12 Principles (http://www.agilemanifesto.
org/principles.html), in which the principles
themselves are based on the Agile Manifesto
(http://www.agilemanifesto.org). The Agile
Manifesto and its 12 Principles are abstract con-
cepts and are arguably written in plain, simple
language. That’s a subjective call based on a
shared point of view.

The one thing I always found interesting about
the Agile principles is the relative position of
principle numbers One and Seven:

•	 Principle One: Our highest priority is to
satisfy the customer through early and con-
tinuous delivery of valuable software.

•	 Principle Seven: Working software is the
primary measure of progress.

Why aren’t these two principles adjacent to one
another? Is that important? The only way soft-
ware can deliver value to the business is if it’s
A): delivered, and B): works per the business’s
requirements. Reading the principles, the two
are disconnected. Their relative position to one
other is itself important context that aids under-
standing and thus goes to whether the language
is truly “plain, and simple!” This is where having
a good editor matters.

Then there’s Principle Four: Business people and
developers must work together daily throughout
the project. (Continued on page 73)

CODA: On Rules and Procedures74

CODA:
On Plain, Simple Language
The Danish physicist and Nobel Laureate Niels Bohr believed that any concept, no matter how
complex, should be explainable in plain, simple language. Bohr was instrumental in aiding
understanding of Quantum Theory, a very complex subject indeed. He believed that once the heavy

CODA

http://www.agilemanifesto.org/principles.html

Does your team lack the technical knowledge or the resources to start new software development projects,

or keep existing projects moving forward? CODE Consulting has top-tier developers available to fill in

the technical skills and manpower gaps to make your projects successful. With in-depth experience in .NET,

.NET Core, web development, Azure, custom apps for iOS and Android and more, CODE Consulting can

get your software project back on track.

Contact us today for a free 1-hour consultation to see how we can help you succeed.

codemag.com/OneHourConsulting
832-717-4445 ext. 9 • info@codemag.com

TAKE
AN HOUR
ON US!

GET YOUR

FREE HOUR

www.codemag.com/onehourconsulting

Is slow outdated software stealing way too much of your free time? We can help.

We specialize in updating legacy business applications to modern technologies.

CODE Consulting has top-tier developers available with in-depth experience in .NET,

web development, desktop development (WPF), Blazor, Azure, mobile apps, IoT and more.

Contact us today for a complimentary one hour tech consultation. No strings. No commitment. Just CODE.

codemag.com/modernize
832-717-4445 ext. 9 • info@codemag.com

NEED
MORE OF THIS?

shuttersto
ck/Lucky-p

ho
to

g
rap

her

www.codemag.com/modernize

